Smoothing splineSmoothing splines are function estimates, , obtained from a set of noisy observations of the target , in order to balance a measure of goodness of fit of to with a derivative based measure of the smoothness of . They provide a means for smoothing noisy data. The most familiar example is the cubic smoothing spline, but there are many other possibilities, including for the case where is a vector quantity. Let be a set of observations, modeled by the relation where the are independent, zero mean random variables (usually assumed to have constant variance).
Retraction (topology)In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace. An absolute neighborhood retract (ANR) is a particularly well-behaved type of topological space. For example, every topological manifold is an ANR.
Markov odometerIn mathematics, a Markov odometer is a certain type of topological dynamical system. It plays a fundamental role in ergodic theory and especially in orbit theory of dynamical systems, since a theorem of H. Dye asserts that every ergodic nonsingular transformation is orbit-equivalent to a Markov odometer. The basic example of such system is the "nonsingular odometer", which is an additive topological group defined on the product space of discrete spaces, induced by addition defined as , where .
Heaviside step functionThe Heaviside step function, or the unit step function, usually denoted by H or θ (but sometimes u, 1 or ), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one. The function was originally developed in operational calculus for the solution of differential equations, where it represents a signal that switches on at a specified time and stays switched on indefinitely.
Obstruction theoryIn mathematics, obstruction theory is a name given to two different mathematical theories, both of which yield cohomological invariants. In the original work of Stiefel and Whitney, characteristic classes were defined as obstructions to the existence of certain fields of linear independent vectors. Obstruction theory turns out to be an application of cohomology theory to the problem of constructing a cross-section of a bundle.
Contractible spaceIn mathematics, a topological space X is contractible if the identity map on X is null-homotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within that space. A contractible space is precisely one with the homotopy type of a point. It follows that all the homotopy groups of a contractible space are trivial. Therefore any space with a nontrivial homotopy group cannot be contractible.
One-parameter groupIn mathematics, a one-parameter group or one-parameter subgroup usually means a continuous group homomorphism from the real line (as an additive group) to some other topological group . If is injective then , the image, will be a subgroup of that is isomorphic to as an additive group. One-parameter groups were introduced by Sophus Lie in 1893 to define infinitesimal transformations. According to Lie, an infinitesimal transformation is an infinitely small transformation of the one-parameter group that it generates.
Solenoid (mathematics)This page discusses a class of topological groups. For the wrapped loop of wire, see Solenoid. In mathematics, a solenoid is a compact connected topological space (i.e. a continuum) that may be obtained as the inverse limit of an inverse system of topological groups and continuous homomorphisms where each is a circle and fi is the map that uniformly wraps the circle for times () around the circle . This construction can be carried out geometrically in the three-dimensional Euclidean space R3.
Domain of a functionIn mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by or , where f is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be". More precisely, given a function , the domain of f is X. In modern mathematical language, the domain is part of the definition of a function rather than a property of it. In the special case that X and Y are both subsets of , the function f can be graphed in the Cartesian coordinate system.
Schur complementIn linear algebra and the theory of matrices, the Schur complement of a block matrix is defined as follows. Suppose p, q are nonnegative integers, and suppose A, B, C, D are respectively p × p, p × q, q × p, and q × q matrices of complex numbers. Let so that M is a (p + q) × (p + q) matrix. If D is invertible, then the Schur complement of the block D of the matrix M is the p × p matrix defined by If A is invertible, the Schur complement of the block A of the matrix M is the q × q matrix defined by In the case that A or D is singular, substituting a generalized inverse for the inverses on M/A and M/D yields the generalized Schur complement.