We consider a commonly studied supervised classification of a synthetic dataset whose labels are generated by feeding a one-layer non-linear neural network with random iid inputs. We study the generalization performances of standard classifiers in the high ...
Training deep neural networks requires well-annotated datasets. However, real world datasets are often noisy, especially in a multi-label scenario, i.e. where each data point can be attributed to more than one class. To this end, we propose a regularizatio ...
The goal of regression and classification methods in supervised learning is to minimize the empirical risk, that is, the expectation of some loss function quantifying the prediction error under the empirical distribution. When facing scarce training data, ...
The scale of modern datasets necessitates the development of efficient distributed optimization methods for machine learning. We present a general-purpose framework for distributed computing environments, CoCoA, that has an efficient communication scheme a ...
Metal cations often play an important role in shaping the three-dimensional structure of peptides. As an example, the model system AcPheAla5LysH+ is investigated in order to fully understand the forces that stabilize its helical structure. In particular, t ...
For a geoscientist, the Relative Geologic Time (RGT) is an important tool to perform chronostratigraphic analysis. However, automatically estimate an RGT image from a seismic image can be a challenging task where we have to respect seismic features, the de ...
We consider the model selection consistency or sparsistency of a broad set of ℓ1-regularized M-estimators for linear and non-linear statistical models in a unified fashion. For this purpose, we propose the local structured smoothness condition (LSS ...
Noniterative data-driven techniques are design methods that allow optimal feedback control laws to be derived from input-output (I/O) data only, without the need of a model of the process. A drawback of these methods is that, in their standard formulation, ...
The Virtual Reference Feedback Tuning (VRFT) approach is a design method that allow optimal feedback control laws to be derived from input-output (I/O) data only, without need of a model of the process. A drawback of this methods is that, in its standard f ...
We present a general formula for the Wess-Zumino action associated with the Weyl anomaly, given in a curved background for any even number of dimensions. The result is obtained by considering a finite Weyl transformation of counterterms in dimensional regu ...
Springer2013
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.