FortranFortran (ˈfɔrtræn; formerly FORTRAN) is a general-purpose, compiled imperative programming language that is especially suited to numeric computation and scientific computing. Fortran was originally developed by IBM in the 1950s for scientific and engineering applications, and subsequently came to dominate scientific computing. It has been in use for over seven decades in computationally intensive areas such as numerical weather prediction, finite element analysis, computational fluid dynamics, geophysics, computational physics, crystallography and computational chemistry.
Control flowIn computer science, control flow (or flow of control) is the order in which individual statements, instructions or function calls of an imperative program are executed or evaluated. The emphasis on explicit control flow distinguishes an imperative programming language from a declarative programming language. Within an imperative programming language, a control flow statement is a statement that results in a choice being made as to which of two or more paths to follow.
ActiveXActiveX is a deprecated software framework created by Microsoft that adapts its earlier Component Object Model (COM) and Object Linking and Embedding (OLE) technologies for content downloaded from a network, particularly from the World Wide Web. Microsoft introduced ActiveX in 1996. In principle, ActiveX is not dependent on Microsoft Windows operating systems, but in practice, most ActiveX controls only run on Windows. Most also require the client to be running on an x86-based computer because ActiveX controls contain compiled code.
Theological determinismTheological determinism is a form of predeterminism which states that all events that happen are pre-ordained, and/or predestined to happen, by one or more divine beings, or that they are destined to occur given the divine beings' omniscience. Theological determinism exists in a number of religions, including Jainism, Judaism, Christianity, and Islam. It is also supported by proponents of Classical pantheism such as the Stoics and by philosophers such as Baruch Spinoza.
SavepointA savepoint is a way of implementing subtransactions (also known as nested transactions) within a relational database management system by indicating a point within a transaction that can be "rolled back to" without affecting any work done in the transaction before the savepoint was created. Multiple savepoints can exist within a single transaction. Savepoints are useful for implementing complex error recovery in database applications.
CompatibilismCompatibilism is the belief that free will and determinism are mutually compatible and that it is possible to believe in both without being logically inconsistent. Compatibilists believe that freedom can be present or absent in situations for reasons that have nothing to do with metaphysics. In other words, that causal determinism does not exclude the truth of possible future outcomes. Because free will is seen as a necessary prerequisite for moral responsibility, compatibilism is often used to support compatibility between moral responsibility and determinism.
Transaction logicTransaction Logic is an extension of predicate logic that accounts in a clean and declarative way for the phenomenon of state changes in logic programs and databases. This extension adds connectives specifically designed for combining simple actions into complex transactions and for providing control over their execution. The logic has a natural model theory and a sound and complete proof theory. Transaction Logic has a Horn clause subset, which has a procedural as well as a declarative semantics.
Eventual consistencyEventual consistency is a consistency model used in distributed computing to achieve high availability that informally guarantees that, if no new updates are made to a given data item, eventually all accesses to that item will return the last updated value. Eventual consistency, also called optimistic replication, is widely deployed in distributed systems and has origins in early mobile computing projects. A system that has achieved eventual consistency is often said to have converged, or achieved replica convergence.
Data redundancyIn computer main memory, auxiliary storage and computer buses, data redundancy is the existence of data that is additional to the actual data and permits correction of errors in stored or transmitted data. The additional data can simply be a complete copy of the actual data (a type of repetition code), or only select pieces of data that allow detection of errors and reconstruction of lost or damaged data up to a certain level.
Consistency (database systems)In database systems, consistency (or correctness) refers to the requirement that any given database transaction must change affected data only in allowed ways. Any data written to the database must be valid according to all defined rules, including constraints, cascades, triggers, and any combination thereof. This does not guarantee correctness of the transaction in all ways the application programmer might have wanted (that is the responsibility of application-level code) but merely that any programming errors cannot result in the violation of any defined database constraints.