Summary
In computer science, control flow (or flow of control) is the order in which individual statements, instructions or function calls of an imperative program are executed or evaluated. The emphasis on explicit control flow distinguishes an imperative programming language from a declarative programming language. Within an imperative programming language, a control flow statement is a statement that results in a choice being made as to which of two or more paths to follow. For non-strict functional languages, functions and language constructs exist to achieve the same result, but they are usually not termed control flow statements. A set of statements is in turn generally structured as a block, which in addition to grouping, also defines a lexical scope. Interrupts and signals are low-level mechanisms that can alter the flow of control in a way similar to a subroutine, but usually occur as a response to some external stimulus or event (that can occur asynchronously), rather than execution of an in-line control flow statement. At the level of machine language or assembly language, control flow instructions usually work by altering the program counter. For some central processing units (CPUs), the only control flow instructions available are conditional or unconditional branch instructions, also termed jumps. The kinds of control flow statements supported by different languages vary, but can be categorized by their effect: Continuation at a different statement (unconditional branch or jump) Executing a set of statements only if some condition is met (choice - i.e., conditional branch) Executing a set of statements zero or more times, until some condition is met (i.e., loop - the same as conditional branch) Executing a set of distant statements, after which the flow of control usually returns (subroutines, coroutines, and continuations) Stopping the program, preventing any further execution (unconditional halt) Label (computer science) A label is an explicit name or number assigned to a fixed position within the source code, and which may be referenced by control flow statements appearing elsewhere in the source code.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.