Publication

Adsorption de polycarboxylates et de lignosulfonates sur poudre modèle et ciments

François Perche
2004
EPFL thesis
Abstract

Placing concrete requires much more water than the cement needs for its hydration. This results in an important porosity in the hardened concrete, which accentuates the degradation of this material. By adding small amounts of polymeric admixtures, called superplasticizers, to the fresh concrete one can significantly reduce the amount of water required to obtain the suitable workability. The plasticizing effect of superplasticizers has been studied for many years, and remains today, an ongoing field of research. This research led to a better understanding of the forces that act during the deflocculation and dispersion of cement grains induced by superplasticizers. This research work was performed within the framework of the "Superplast" European project. Its main objective has been to determine which parameters (molecular structure, induced charge, adsorption mode, molar mass) influence the plasticizing effects of superplasticizers. The results of this study will allow synthesis new polymeric admixtures with better performances than those currently available. For this study, two types of superplasticizers were selected: lignosulfonates and polycarboxylates. For each one, different samples were synthesised and characterised. For each sample, adsorption, rheological and interaction forces measurements were performed by our partners while we have performed adsorption and electroacoustic measurements on model powder suspensions. Different cement model powders were investigated and a magnesium oxide was selected. The particle size distribution and reactivity were carefully characterized. The inert model system (MgO) allowed us to study adsorption mechanisms without the complexity linked to cement hydration reactions that modify surface and solution of the suspension. Particle surface charge and pH are the two main parameters that influence the polymer adsorption and the polymer conformation. Magnesium oxide which has a high isoelectric point (around at pH 12.4) allows a surface charge similar to cement suspensions at high pH. First, we have measured the adsorption isotherms of all superplasticizers on model suspensions in NaOH (0.01M). This study allowed us to evaluate the affinity of each polymer for MgO and its adsorption plateau. These measurements showed that the lignosulfonates have a higher affinity than the polycarboxylates. They also showed that lignosulfonate adsorption is mainly influenced by their molar mass and their carboxylic group content (for similar sulfonate group content) while polycarboxylate adsorption is mainly driven by the backbone length, the side chain length and the carboxylic group content. Adsorption plateaux allowed us to calculate the surface coverage ratio and to estimate the superplasticizer conformation on the surface. Adsorption isotherms were finally measured on a Portland cement. The polymer adsorption is influenced by the same parameters as on MgO. The model system MgO is representative for the polymer adsorption on cement. In a second step, different electrolytes were added to model suspensions. This practice allowed us to study separately the effect of the main ions present in cement suspensions (Na+, Ca2+, SO42-, OH-) and to mimic the ionic composition of the aqueous phase of the cement suspension. Lignosulfonate adsorption is neither influenced by the studied ions or the pH. Only an increase of ionic strength increases the adsorbed polymer mass. Polycarboxylate adsorption is influenced by calcium and sulfate ions and by the particle surface charge. Finally, superplasticizer adsorption was studied on different cements by our partners and on a fly ash and a silica fume by ourselves. Lignosulfonate adsorption isotherms on cements showed that affinity and adsorbed polymer mass increases with the C3A content and decreases with the alkalis content. The isotherms measured on industrial by-products showed that superplasticizers adsorb on fly ash, but not on silica fume.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Plasticizer
A plasticizer (UK: plasticiser) is a substance that is added to a material to make it softer and more flexible, to increase its plasticity, to decrease its viscosity, and/or to decrease friction during its handling in manufacture. Plasticizers are commonly added to polymers such as plastics and rubber, either to facilitate the handling of the raw material during fabrication, or to meet the demands of the end product's application.
Adsorption
Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the adsorbate on the surface of the adsorbent. This process differs from absorption, in which a fluid (the absorbate) is dissolved by or permeates a liquid or solid (the absorbent). Adsorption is a surface phenomenon and the adsorbate does not penetrate through the surface and into the bulk of the adsorbent, while absorption involves transfer of the absorbate into the volume of the material, although adsorption does often precede absorption.
Concrete
Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined. When aggregate is mixed with dry Portland cement and water, the mixture forms a fluid slurry that is easily poured and molded into shape.
Show more
Related publications (110)

Adsorption of Copper by Naturally and Artificially Aged Polystyrene Microplastics and Subsequent Release in Simulated Gastrointestinal Fluid

Florian Frédéric Vincent Breider, Thibault Béranger Masset, Lu Zhou

Microplastics, especially aged microplastics can become vectors of metals from environment to organisms with potential negative effects on food chain. However, a few studies focused on the bioavailability of adsorbed metals and most studies related to aged ...
2024

Ion Adsorption Enhances Apparent Nonelectrostatic Attraction between Monomers in Polyelectrolyte Brushes

Harm-Anton Klok, Xingyu Xu, Jing Yu

Polyelectrolyte brushes are responsive to salt in the environment, and this has found broad applications in antifouling, biolubrication, and drug delivery. Salt primarily influences the conformation of the polyelectrolytes through ion adsorption. While ion ...
Washington2024

Data-driven optimization tool for the functional, economic, and environmental properties of blended cement concrete using supplementary cementitious materials

Hisham Tarek Mohamed Hafez

The need to produce more sustainable concrete is proving imminent given the rising environmental concerns facing the industry. Blended cement concrete, based on any of the prominent supplementary cementitious materials (SCMs) such as fly ash, ground granul ...
ELSEVIER2023
Show more
Related MOOCs (8)
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.
Cement Chemistry and Sustainable Cementitious Materials
Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.
The Art of Structures I - Cables and arcs
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.