Motion planning and obstacle avoidance for mobile robots in highly cluttered dynamic environments
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper we present a navigation method for mobile robots in partially known indoor environments based on integration of graph based search algorithms and dynamic window local obstacle avoidance method. With the attention on a dynamic environment thre ...
This paper presents a navigation framework which enables multiple mobile robots to attain individual goals, coordinate their actions and work safely and reliably in a highly dynamic environment. We give an overview of the framework architecture, its layeri ...
A novel and low-cost passively compliant mechanism is described that can be used with RC servos to actuate legged robots in tasks involving high dynamic loads such as bouncing. Compliance is achieved by combining visco-elastic material and metal parts. Joi ...
The odometry error of a mobile robot contains both sys- tematic and non-systematic components. The first ones are independent of the environment while the second ones depend on the interaction of the robot with the environ- ment where the robot moves. In t ...
This paper presents a solution to the Simultaneous Localization and Mapping (SLAM) problem in the stochastic map framework for a mobile robot navigating in an indoor environment. The approach is based on the concept of the relative map. The idea consists i ...
This paper presents a new technique to estimate the extrinsic parameters of a robot-vision sensor system. More in general, this technique can be adopted to calibrate any robot bearing sensor. It is based on the Extended Kalman Filter. It is very simple and ...
This paper presents a solution to the Simultaneous Localization and Mapping (SLAM) problem in the stochastic map framework for a mobile robot navigating in an indoor environment. The approach is based on the concept of the relative map. The idea consists i ...
This paper addresses the problem of mobile robot navigation in indoor cluttered environments. A new algorithm for both longitudinal and lateral real-time control of wheel-based mobile robots has been proposed. Its main characteristic is smooth and stable f ...