**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Scheduling Reserved Traffic in Input-Queued Switches: New Delay Bounds via Probabilistic Techniques

Abstract

We consider the problem of providing delay bounds to reserved traffic in high-speed input-queued switches. We assume that the matrix of bandwidth demands is known and we use the now standard approach of decomposing this matrix into a convex combination of permutation matrices. Our problem therefore reduces to the problem of constructing a schedule for these permutation matrices. In this paper we derive delay bounds for four algorithms that are based on probabilistic techniques. For each algorithm we first place tokens randomly in continuous time for each permutation matrix. If the $n$th token that appears corresponds to permutation matrix $M_k$ then we schedule matrix $M_k$ in the $n$th time slot. The algorithms differ in how the random token processes are defined. For two of the algorithms we are able to perform a derandomization so as to obtain deterministic schedules. We show through numerical computation that in many situations the resulting delay bounds are smaller than the previously best-known delay bounds of Chang, Chen, and Huang.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (1)

Permutation matrix

In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere. Each such matrix, say P, represents a permutation of m elements and, when used to multiply another matrix, say A, results in permuting the rows (when pre-multiplying, to form PA) or columns (when post-multiplying, to form AP) of the matrix A.