GaN metal-oxide-semiconductor high electron mobility transistors (MOS)HEMTs) offer outstanding properties for next-generation power electronics devices. The high conductivity, high voltage blocking capability, high operation frequency, and device-level int ...
Two-dimensional (2D) materials such as graphene and transition metal dichalcogenide (TMDC) are considered as one of the most promising material platforms for future electronic devices, due to their ultra-thin thickness and fascinating electrical and optica ...
Individual transistors based on emerging reconfigurable nanotechnologies exhibit electrical conduction for both types of charge carriers. These transistors (referred to as Reconfigurable Field-Effect Transistors (RFETs)) enable dynamic reconfiguration to d ...
Ferroelectric materials are explored for numerous applications thanks to their properties associated with electrically switchable spontaneous polarization. Perovskites are an established class of ferroelectrics used for sensors and actuators. However, they ...
In strained mechanical resonators, the concurrence of tensile stress and geometric nonlinearity dramatically reduces dissipation. This phenomenon, called dissipation dilution, is employed in mirror suspensions of gravitational-wave interferometers and at t ...
Today, we are witnessing the Internet of Things (IoT) revolution, which facilitates and improves our
lives in many aspects, but comes with several challenges related to the technology deployment at
large scales. Handling ever growing amounts of information ...
The science and engineering of two-dimensional materials (2DMs), in particular, of 2D semiconductors, is advancing at a thriving pace. It is well known that these delicate few-atoms thick materials can be damaged during the processing toward their integrat ...
Due to their synaptic functionality based on interacting electronic and ionic charge carriers, organic electrochemical transistors (OECTs) appeal as highly attractive candidates for a new generation of organic neuromorphic devices. Despite their acknowledg ...
Two-dimensional (2D) transition metal dichalcogenides (TMDs) possess remarkable optoelectronic properties which are unique and tunable based on composition and thickness. These materials are posed to revolutionize ultrathin devices across many fields inclu ...
This article investigates the device variability induced by the total ionizing dose (TID) effects in a commercial 16-nm bulk nFinFETs, using specially designed test structures and measurement procedures aimed at maximizing the matching between devices. DC ...