Algebraic curveIn mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0.
CurveIn mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that appeared more than 2000 years ago in Euclid's Elements: "The [curved] line is [...] the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which [...
Curve25519In cryptography, Curve25519 is an elliptic curve used in elliptic-curve cryptography (ECC) offering 128 bits of security (256-bit key size) and designed for use with the elliptic curve Diffie–Hellman (ECDH) key agreement scheme. It is one of the fastest curves in ECC, and is not covered by any known patents. The reference implementation is public domain software. The original Curve25519 paper defined it as a Diffie–Hellman (DH) function. Daniel J.
Weierstrass elliptic functionIn mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.
List of logarithmic identitiesIn mathematics, many logarithmic identities exist. The following is a compilation of the notable of these, many of which are used for computational purposes. {| cellpadding=3 | || because || |- | || because || |} By definition, we know that: where or . Setting , we can see that: So, substituting these values into the formula, we see that: which gets us the first property. Setting , we can see that: So, substituting these values into the formula, we see that: which gets us the second property.
IsogenyIn mathematics, particularly in algebraic geometry, an isogeny is a morphism of algebraic groups (also known as group varieties) that is surjective and has a finite kernel. If the groups are abelian varieties, then any morphism f : A → B of the underlying algebraic varieties which is surjective with finite fibres is automatically an isogeny, provided that f(1_A) = 1_B. Such an isogeny f then provides a group homomorphism between the groups of k-valued points of A and B, for any field k over which f is defined.
Implicit curveIn mathematics, an implicit curve is a plane curve defined by an implicit equation relating two coordinate variables, commonly x and y. For example, the unit circle is defined by the implicit equation . In general, every implicit curve is defined by an equation of the form for some function F of two variables. Hence an implicit curve can be considered as the set of zeros of a function of two variables. Implicit means that the equation is not expressed as a solution for either x in terms of y or vice versa.
Hidden subgroup problemThe hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science. The framework captures problems such as factoring, discrete logarithm, graph isomorphism, and the shortest vector problem. This makes it especially important in the theory of quantum computing because Shor's quantum algorithm for factoring is an instance of the hidden subgroup problem for finite Abelian groups, while the other problems correspond to finite groups that are not Abelian.
MathematicsMathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them.
Shor's algorithmShor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. It is one of the few known quantum algorithms with compelling potential applications and strong evidence of superpolynomial speedup compared to best known classical (that is, non-quantum) algorithms. On the other hand, factoring numbers of practical significance requires far more qubits than available in the near future.