Courbe algébriqueEn mathématiques, et plus précisément en géométrie algébrique, une courbe algébrique est une variété algébrique (ou un schéma de type fini) sur un corps, dont les composantes irréductibles sont de dimension 1. Cette définition est la généralisation moderne de celle des courbes algébriques classiques, telles que les coniques, définies, dans le cas des courbes planes, comme l'ensemble des points solutions d'une équation polynomiale. Sous sa forme la plus générale, une courbe algébrique sur un corps est une variété algébrique de dimension 1 sur , séparée pour éviter des pathologies.
CourbeEn mathématiques, plus précisément en géométrie, une courbe, ou ligne courbe, est un objet du plan ou de l'espace usuel, similaire à une droite mais non nécessairement linéaire. Par exemple, les cercles, les droites, les segments et les lignes polygonales sont des courbes. La notion générale de courbe se décline en plusieurs objets mathématiques ayant des définitions assez proches : arcs paramétrés, lignes de niveau, sous-variétés de .
Curve25519vignette|Représentation de la courbe elliptique Curve25519 Curve25519 est une courbe elliptique offrant 128 bits de sécurité et conçue pour être utilisée par le protocole d'échange de clés Diffie-Hellman basé sur les courbes elliptiques (ECDH). C'est une courbe elliptique permettant des performances très élevées, n'étant protégée par aucun brevet connu et moins affectée par les générateurs de nombres pseudo-aléatoires défaillants. Le brouillon original Curve25519, le définissait comme une fonction Diffie–Hellman (DH).
Fonction elliptique de WeierstrassEn analyse complexe, les fonctions elliptiques de Weierstrass forment une classe importante de fonctions elliptiques c'est-à-dire de fonctions méromorphes doublement périodiques. Toute fonction elliptique peut être exprimée à l'aide de celles-ci. Supposons que l'on souhaite fabriquer une telle fonction de période 1. On peut prendre une fonction quelconque, définie sur [0, 1] et telle que f(0) = f(1) et la prolonger convenablement. Un tel procédé a des limites. Par exemple, on obtiendra rarement des fonctions analytiques de cette façon.
Identités logarithmiquesCet article dresse une liste d'identités utiles lorsqu'on travaille avec les logarithmes. Ces identités sont toutes valables à condition que les réels utilisés (, , et ) soient strictement positifs. En outre, les bases des logarithmes doivent être différentes de 1. Pour toute base , on a : Par définition des logarithmes, on a : Ces trois identités permettent d'utiliser des tables de logarithme et des règles à calcul ; connaissant le logarithme de deux nombres, il est possible de les multiplier et diviser rapidement, ou aussi bien calculer des puissances ou des racines de ceux-ci.
IsogenyIn mathematics, particularly in algebraic geometry, an isogeny is a morphism of algebraic groups (also known as group varieties) that is surjective and has a finite kernel. If the groups are abelian varieties, then any morphism f : A → B of the underlying algebraic varieties which is surjective with finite fibres is automatically an isogeny, provided that f(1_A) = 1_B. Such an isogeny f then provides a group homomorphism between the groups of k-valued points of A and B, for any field k over which f is defined.
Courbe implicitevignette|402x402px| Ovales de Cassini :(1) a = 1,1 , c=1 (au dessus),(2) a = c = 1 (au milieu),(3) a = 1, c = 1,05 (au dessous)|gauche En mathématiques, une courbe implicite (en coordonnées cartésiennes) est une courbe plane définie par une équation implicite reliant les deux coordonnées x et y d'un point de . Par exemple, le cercle unité est défini par l'équation implicite . Dans le cas général, une courbe implicite est définie en coordonnées cartésiennes par une équation de la forme où F est une fonction de deux variables.
Hidden subgroup problemThe hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science. The framework captures problems such as factoring, discrete logarithm, graph isomorphism, and the shortest vector problem. This makes it especially important in the theory of quantum computing because Shor's quantum algorithm for factoring is an instance of the hidden subgroup problem for finite Abelian groups, while the other problems correspond to finite groups that are not Abelian.
Mathématiquesthumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
Algorithme de ShorEn arithmétique modulaire et en informatique quantique, l’algorithme de Shor est un algorithme quantique conçu par Peter Shor en 1994, qui factorise un entier naturel N en temps O et en espace . Beaucoup de cryptosystèmes à clé publique, tels que le RSA, deviendraient vulnérables si l'algorithme de Shor était un jour implanté dans un calculateur quantique pratique. Un message chiffré avec RSA peut être déchiffré par factorisation de sa clé publique N, qui est le produit de deux nombres premiers.