Curve fittingCurve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. Curve fitting can involve either interpolation, where an exact fit to the data is required, or smoothing, in which a "smooth" function is constructed that approximately fits the data. A related topic is regression analysis, which focuses more on questions of statistical inference such as how much uncertainty is present in a curve that is fit to data observed with random errors.
ManifoldIn mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
Surface triangulationTriangulation of a surface means a net of triangles, which covers a given surface partly or totally, or the procedure of generating the points and triangles of such a net of triangles. This article describes the generation of a net of triangles. In literature there are contributions which deal with the optimization of a given net. Surface triangulations are important for visualizing surfaces and the application of finite element methods.
Vertex (computer graphics)A vertex (plural vertices) in computer graphics is a data structure that describes certain attributes, like the position of a point in 2D or 3D space, or multiple points on a surface. 3D models are most often represented as triangulated polyhedra forming a triangle mesh. Non-triangular surfaces can be converted to an array of triangles through tessellation. Attributes from the vertices are typically interpolated across mesh surfaces. The vertices of triangles are associated not only with spatial position but also with other values used to render the object correctly.