Dynamic DNSDynamic DNS (DDNS) is a method of automatically updating a name server in the Domain Name System (DNS), often in real time, with the active DDNS configuration of its configured hostnames, addresses or other information. The term is used to describe two different concepts. The first is "dynamic DNS updating" which refers to systems that are used to update traditional DNS records without manual editing. These mechanisms use TSIG to provide security.
MiddlewareMiddleware is a type of computer software that provides services to software applications beyond those available from the operating system. It can be described as "software glue". Middleware makes it easier for software developers to implement communication and input/output, so they can focus on the specific purpose of their application. It gained popularity in the 1980s as a solution to the problem of how to link newer applications to older legacy systems, although the term had been in use since 1968.
Middleware (distributed applications)Middleware in the context of distributed applications is software that provides services beyond those provided by the operating system to enable the various components of a distributed system to communicate and manage data. Middleware supports and simplifies complex distributed applications. It includes web servers, application servers, messaging and similar tools that support application development and delivery. Middleware is especially integral to modern information technology based on XML, SOAP, Web services, and service-oriented architecture.
Message-oriented middlewareMessage-oriented middleware (MOM) is software or hardware infrastructure supporting sending and receiving messages between distributed systems. MOM allows application modules to be distributed over heterogeneous platforms and reduces the complexity of developing applications that span multiple operating systems and network protocols. The middleware creates a distributed communications layer that insulates the application developer from the details of the various operating systems and network interfaces.
Distributed algorithmA distributed algorithm is an algorithm designed to run on computer hardware constructed from interconnected processors. Distributed algorithms are used in different application areas of distributed computing, such as telecommunications, scientific computing, distributed information processing, and real-time process control. Standard problems solved by distributed algorithms include leader election, consensus, distributed search, spanning tree generation, mutual exclusion, and resource allocation.
Two-phase commit protocolIn transaction processing, databases, and computer networking, the two-phase commit protocol (2PC, tupac) is a type of atomic commitment protocol (ACP). It is a distributed algorithm that coordinates all the processes that participate in a distributed atomic transaction on whether to commit or abort (roll back) the transaction. This protocol (a specialised type of consensus protocol) achieves its goal even in many cases of temporary system failure (involving either process, network node, communication, etc.
Dynamic Host Configuration ProtocolThe Dynamic Host Configuration Protocol (DHCP) is a network management protocol used on Internet Protocol (IP) networks for automatically assigning IP addresses and other communication parameters to devices connected to the network using a client–server architecture. The technology eliminates the need for individually configuring network devices manually, and consists of two network components, a centrally installed network DHCP server and client instances of the protocol stack on each computer or device.
Three-phase commit protocolIn computer networking and databases, the three-phase commit protocol (3PC) is a distributed algorithm which lets all nodes in a distributed system agree to commit a transaction. It is a more failure-resilient refinement of the two-phase commit protocol (2PC). A two-phase commit protocol cannot dependably recover from a failure of both the coordinator and a cohort member during the Commit phase. If only the coordinator had failed, and no cohort members had received a commit message, it could safely be inferred that no commit had happened.
Distance-vector routing protocolA distance-vector routing protocol in data networks determines the best route for data packets based on distance. Distance-vector routing protocols measure the distance by the number of routers a packet has to pass; one router counts as one hop. Some distance-vector protocols also take into account network latency and other factors that influence traffic on a given route. To determine the best route across a network, routers using a distance-vector protocol exchange information with one another, usually routing tables plus hop counts for destination networks and possibly other traffic information.
Routing Information ProtocolThe Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols which employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support. RIP implements the split horizon, route poisoning, and holddown mechanisms to prevent incorrect routing information from being propagated.