System on a chipA system on a chip or system-on-chip (SoC ,ˈɛsoʊsiː; pl. SoCs ,ˈɛsoʊsiːz) is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include on-chip central processing unit (CPU), memory interfaces, input/output devices, input/output interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip.
Network on a chipA network on a chip or network-on-chip (NoC ˌɛnˌoʊˈsiː or nɒk ) is a network-based communications subsystem on an integrated circuit ("microchip"), most typically between modules in a system on a chip (SoC). The modules on the IC are typically semiconductor IP cores schematizing various functions of the computer system, and are designed to be modular in the sense of network science. The network on chip is a router-based packet switching network between SoC modules.
Portable ExecutableThe Portable Executable (PE) format is a for executables, , DLLs and others used in 32-bit and 64-bit versions of Windows operating systems. The PE format is a data structure that encapsulates the information necessary for the Windows OS loader to manage the wrapped executable code. This includes dynamic library references for linking, API export and import tables, resource management data and thread-local storage (TLS) data. On NT operating systems, the PE format is used for EXE, DLL, SYS (device driver), MUI and other file types.
Logic simulationLogic simulation is the use of simulation software to predict the behavior of digital circuits and hardware description languages. Simulation can be performed at varying degrees of physical abstraction, such as at the transistor level, gate level, register-transfer level (RTL), electronic system-level (ESL), or behavioral level. Logic simulation may be used as part of the verification process in designing hardware. Simulations have the advantage of providing a familiar look and feel to the user in that it is constructed from the same language and symbols used in design.
ExecutableIn computing, executable code, an executable file, or an executable program, sometimes simply referred to as an executable or binary, causes a computer "to perform indicated tasks according to encoded instructions", as opposed to a data file that must be interpreted (parsed) by a program to be meaningful. The exact interpretation depends upon the use. "Instructions" is traditionally taken to mean machine code instructions for a physical CPU. In some contexts, a file containing scripting instructions (such as bytecode) may also be considered executable.
Executable compressionExecutable compression is any means of compressing an executable file and combining the compressed data with decompression code into a single executable. When this compressed executable is executed, the decompression code recreates the original code from the compressed code before executing it. In most cases this happens transparently so the compressed executable can be used in exactly the same way as the original. Executable compressors are often referred to as "runtime packers", "software packers", "software protectors" (or even "polymorphic packers" and "obfuscating tools").
Multi-chip moduleA multi-chip module (MCM) is generically an electronic assembly (such as a package with a number of conductor terminals or "pins") where multiple integrated circuits (ICs or "chips"), semiconductor dies and/or other discrete components are integrated, usually onto a unifying substrate, so that in use it can be treated as if it were a larger IC. Other terms for MCM packaging include "heterogeneous integration" or "hybrid integrated circuit".
Bus (computing)In computer architecture, a bus (shortened form of the Latin omnibus, and historically also called data highway or databus) is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components (wire, optical fiber, etc.) and software, including communication protocols. Early computer buses were parallel electrical wires with multiple hardware connections, but the term is now used for any physical arrangement that provides the same logical function as a parallel electrical busbar.
Register-transfer levelIn digital circuit design, register-transfer level (RTL) is a design abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between hardware registers, and the logical operations performed on those signals. Register-transfer-level abstraction is used in hardware description languages (HDLs) like Verilog and VHDL to create high-level representations of a circuit, from which lower-level representations and ultimately actual wiring can be derived.
Executable and Linkable FormatIn computing, the Executable and Linkable Format (ELF, formerly named Extensible Linking Format), is a common standard for executable files, object code, shared libraries, and core dumps. First published in the specification for the application binary interface (ABI) of the Unix operating system version named System V Release 4 (SVR4), and later in the Tool Interface Standard, it was quickly accepted among different vendors of Unix systems. In 1999, it was chosen as the standard binary file format for Unix and Unix-like systems on x86 processors by the 86open project.