Variational reconstruction of scalar and vector images from non-uniform samples
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We show that isogeometric Galerkin discretizations of eigenvalue problems related to the Laplace operator subject to any standard type of homogeneous boundary conditions have no outliers in certain optimal spline subspaces. Roughly speaking, these optimal ...
We consider scalar-valued shape functionals on sets of shapes which are small perturbations of a reference shape. The shapes are described by parameterizations and their closeness is induced by a Hilbert space structure on the parameter domain. We justify ...
This work focuses on the development of a super-penalty strategy based on the L2-projection of suitable coupling terms to achieve C1-continuity between non-conforming multi-patch isogeometric Kirchhoff plates. In particular, the choice of penalty parameter ...
2021
Since the birth of Information Theory, researchers have defined and exploited various information measures, as well as endowed them with operational meanings. Some were born as a "solution to a problem", like Shannon's Entropy and Mutual Information. Other ...
EPFL2022
,
We focus on the generalized-interpolation problem. There, one reconstructs continuous-domain signals that honor discrete data constraints. This problem is infinite-dimensional and ill-posed. We make it well-posed by imposing that the solution balances data ...
Enabling analysis of non-linear systems in linear form, the Koopman operator has been shown to be a powerful tool for system identification and controller design. However, current data-driven methods cannot provide quantification of model uncertainty given ...
2020
, , ,
We propose a novel sparse dictionary learning method for planar shapes in the sense of Kendall, namely configurations of landmarks in the plane considered up to similitudes. Our shape dictionary method provides a good trade-off between algorithmic simplici ...
SIAM PUBLICATIONS2020
Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standar ...
We characterize the solution of a broad class of convex optimization problems that address the reconstruction of a function from a finite number of linear measurements. The underlying hypothesis is that the solution is decomposable as a finite sum of compo ...
Generalized sampling consists in the recovery of a function f, from the samples of the responses of a collection of linear shift-invariant systems to the input f . The reconstructed function is typically a member of a finitely generated integer-shift invar ...