Throughout history, the pace of knowledge and information sharing has evolved into an unthinkable speed and media. At the end of the XVII century, in Europe, the ideas that would shape the "Age of Enlightenment" were slowly being developed in coffeehouses, ...
We study the extent to which credit index (CDX) options are priced consistent with S&P 500 (SPX) equity index options. We derive analytical expressions for CDX and SPX options within a structural credit-risk model with stochastic volatility and jumps using ...
In this thesis we address various factors that contribute both theoretically and practically to mitigating supply demand mismatches. The thesis is composed of three chapters, where each chapter is an independent scientific paper. In the first paper, we dev ...
This paper reviews the mortgage-backed securities (MBS) market, with a particular emphasis on agency residential MBS in the United States. We discuss the institutional environment, security design, MBS risks and asset pricing, and the economic effects of m ...
This thesis consists of three applications of machine learning techniques to empirical asset pricing.
In the first part, which is co-authored work with Oksana Bashchenko, we develop a new method that detects jumps nonparametrically in financial time series ...
This thesis aims to provide novel analyses and data that improve the understanding of the financing of investments in clean technologies. In particular, this thesis explores the role that private and public actors play in supporting young innovative firms. ...
Nonparametric inference for functional data over two-dimensional domains entails additional computational and statistical challenges, compared to the one-dimensional case. Separability of the covariance is commonly assumed to address these issues in the de ...
This thesis focuses on non-parametric covariance estimation for random surfaces, i.e.~functional data on a two-dimensional domain. Non-parametric covariance estimation lies at the heart of functional data analysis, and
considerations of statistical and com ...
This thesis addresses theoretical and practical aspects of identification and subsequent control of self-exciting point processes. The main contributions correspond to four separate scientific papers.In the first paper, we address the challenge of robust ...
This thesis uses machine learning techniques and text data to investigate the relationships that arise between the Fed and financial markets, and their consequences for asset prices.The first chapter, entitled Market Expectations and the Impact of Unconv ...