Surface of revolutionA surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). The volume bounded by the surface created by this revolution is the solid of revolution. Examples of surfaces of revolution generated by a straight line are cylindrical and conical surfaces depending on whether or not the line is parallel to the axis.
Multi-objective optimizationMulti-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective is a type of vector optimization that has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives.
Enneper surfaceIn differential geometry and algebraic geometry, the Enneper surface is a self-intersecting surface that can be described parametrically by: It was introduced by Alfred Enneper in 1864 in connection with minimal surface theory. The Weierstrass–Enneper parameterization is very simple, , and the real parametric form can easily be calculated from it. The surface is conjugate to itself.
Irreducible representationIn mathematics, specifically in the representation theory of groups and algebras, an irreducible representation or irrep of an algebraic structure is a nonzero representation that has no proper nontrivial subrepresentation , with closed under the action of . Every finite-dimensional unitary representation on a Hilbert space is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but the converse may not hold, e.
Boy's surfaceIn geometry, Boy's surface is an immersion of the real projective plane in 3-dimensional space found by Werner Boy in 1901. He discovered it on assignment from David Hilbert to prove that the projective plane could not be immersed in 3-space. Boy's surface was first parametrized explicitly by Bernard Morin in 1978. Another parametrization was discovered by Rob Kusner and Robert Bryant. Boy's surface is one of the two possible immersions of the real projective plane which have only a single triple point.
Moving frameIn mathematics, a moving frame is a flexible generalization of the notion of an ordered basis of a vector space often used to study the extrinsic differential geometry of smooth manifolds embedded in a homogeneous space. In lay terms, a frame of reference is a system of measuring rods used by an observer to measure the surrounding space by providing coordinates. A moving frame is then a frame of reference which moves with the observer along a trajectory (a curve).
SurfaceA surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is the portion with which other materials first interact. The surface of an object is more than "a mere geometric solid", but is "filled with, spread over by, or suffused with perceivable qualities such as color and warmth".
Optimal designIn the design of experiments, optimal designs (or optimum designs) are a class of experimental designs that are optimal with respect to some statistical criterion. The creation of this field of statistics has been credited to Danish statistician Kirstine Smith. In the design of experiments for estimating statistical models, optimal designs allow parameters to be estimated without bias and with minimum variance. A non-optimal design requires a greater number of experimental runs to estimate the parameters with the same precision as an optimal design.
Computer representation of surfacesIn technical applications of 3D computer graphics (CAx) such as computer-aided design and computer-aided manufacturing, surfaces are one way of representing objects. The other ways are wireframe (lines and curves) and solids. Point clouds are also sometimes used as temporary ways to represent an object, with the goal of using the points to create one or more of the three permanent representations. If one considers a local parametrization of a surface: then the curves obtained by varying u while keeping v fixed are coordinate lines, sometimes called the u flow lines.
Surface areaThe surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with flat polygonal faces), for which the surface area is the sum of the areas of its faces. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces.