Statistical Analysis of Functional MRI Data in the Wavelet Domain
Related publications (79)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The benefits and limitations inherent to the 2D post-processing of measurements from Brillouin optical time-domain analyzers are investigated from a fundamental point of view. In a preliminary step, the impact of curve fitting on the precision of the estim ...
High frequency wind time series measured at different heights from the ground (from 1.5 to 25.5 meters) in an urban area were investigated by using the variance of the coefficients of their wavelet transform. Two ranges of scales were identified, sensitive ...
High frequency wind time series measured at different heights from the ground (from 1.5 to 25.5 meters) in an urban area were investigated by using the variance of the coefficients of their wavelet transform. Two ranges of scales were identified, sensitive ...
Fault diagnosis plays an essential role in reducing the maintenance costs of rotating machinery manufacturing systems. In many real applications of fault detection and diagnosis, data tend to be imbalanced, meaning that the number of samples for some fault ...
Objective. Among the different approaches for denoising neural signals, wavelet-based methods are widely used due to their ability to reduce in-band noise. All wavelet denoising algorithms have a common structure, but their effectiveness strongly depends o ...
The usual explanation of the efficacy of wavelet-based methods hinges on the sparsity of many real-world objects in the wavelet domain. Yet, standard wavelet-shrinkage techniques for sparse reconstruction are not competitive in practice, one reason being t ...
In this paper, we study the Besov regularity of a general d-dimensional Lévy white noise. More precisely, we describe new sample paths properties of a given noise in terms of weighted Besov spaces. In particular, we characterize the smoothness and integrab ...
We investigate the performance of wavelet shrinkage methods for the denoising of symmetric-a-stable (S alpha S) self-similar stochastic processes corrupted by additive white Gaussian noise (AWGN), where a is tied to the sparsity of the process. The wavelet ...
A crucial component of steerable wavelets is the radial profile of the generating function in the frequency domain. In this paper, we present an infinite-dimensional optimization scheme that helps us find the optimal profile for a given criterion over the ...
We propose a signal analysis tool based on the sign (or the phase) of complex wavelet coefficients, which we call a signature. The signature is defined as the fine-scale limit of the signs of a signal's complex wavelet coefficients. We show that the signat ...