**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Multiresolution Moment Filters: Theory and Applications

Abstract

We introduce local weighted geometric moments that are computed from an image within a sliding window at multiple scales. When the window function satisfies a two-scale relation, we prove that lower order moments can be computed efficiently at dyadic scales by using a multiresolution wavelet-like algorithm. We show that B-splines are well-suited window functions because, in addition to being refinable, they are positive, symmetric, separable, and very nearly isotropic (Gaussian shape). We present three applications of these multiscale local moments. The first is a feature-extraction method for detecting and characterizing elongated structures in images. The second is a noise-reduction method which can be viewed as a multiscale extension of Savitzky-Golay filtering. The third is a multiscale optical-flow algorithm that uses a local affine model for the motion field, extending the Lucas-Kanade optical-flow method. The results obtained in all cases are promising.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (12)

Related publications (37)

Related concepts (35)

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

Motion

In physics, motion is the phenomenon by which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time. The branch of physics describing the motion of objects without reference to their cause is called kinematics, while the branch studying forces and their effect on motion is called dynamics.

Optical flow

Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and a scene. Optical flow can also be defined as the distribution of apparent velocities of movement of brightness pattern in an image. The concept of optical flow was introduced by the American psychologist James J. Gibson in the 1940s to describe the visual stimulus provided to animals moving through the world.

Gaussian function

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form and with parametric extension for arbitrary real constants a, b and non-zero c. It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c (the standard deviation, sometimes called the Gaussian RMS width) controls the width of the "bell".

Rachid Guerraoui, Nirupam Gupta, John Stephan, Sadegh Farhadkhani, Le Nguyen Hoang, Rafaël Benjamin Pinot

Collaborative learning algorithms, such as distributed SGD (or D-SGD), are prone to faulty machines that may deviate from their prescribed algorithm because of software or hardware bugs, poisoned data or malicious behaviors. While many solutions have been ...

The State Representation Methodology (SRM) combined with the Frequency Slice Wavelet Transform (FSWT), which is a new time-frequency analysis tool, is proposed for assessing the condition of bridges on the basis of bridge monitoring data. First, this paper ...

Friedrich Eisenbrand, Puck Elisabeth van Gerwen, Raimon Fabregat I De Aguilar-Amat

Supervised and unsupervised kernel-based algorithms widely used in the physical sciences depend upon the notion of similarity. Their reliance on pre-defined distance metrics-e.g. the Euclidean or Manhattan distance-are problematic especially when used in c ...