Publication

An Integral Approach to Phase Shifting Interferometry Using a Super-Resolution Frequency Estimation Method

Abstract

The objective of this paper is to describe an integral approach—based on the use of a super-resolution frequency estimation method—to phase shifting interferometry, starting from phase step estimation to phase evaluation at each point on the object surface. Denoising is also taken into consideration for the case of a signal contaminated with white Gaussian noise. The other significant features of the proposal are that it caters to the presence of multiple PZTs in an optical configuration, is capable of determining the harmonic content in the signal and effectively eliminating their influence on measurement, is insensitive to errors arising from PZT miscalibration, is applicable to spherical beams, and is a robust performer even in the presence of white Gaussian intensity noise.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.