Split operator methods for reactive chemical transport in groundwater
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The finite element method is a well-established method for the numerical solution of partial differential equations (PDEs), both linear and nonlinear. However, the repeated re -assemblage of finite element matrices for nonlinear PDEs is frequently pointed ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
Isogeometric analysis is a powerful paradigm which exploits the high smoothness of splines for the numerical solution of high order partial differential equations. However, the tensor-product structure of standard multivariate B-spline models is not well s ...
A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, ...
Kinetic models of chemical reaction systems are typically represented in terms of state variables, such as concentrations, temperature and partial pressures [1]. These state variables in turn depend on the underlying reactions, transfer phenomena, and tran ...
We consider the numerical approximation of high order Partial Differential Equations (PDEs) defined on surfaces in the three dimensional space, with particular emphasis on closed surfaces. We consider computational domains that can be represented by B-spli ...
We introduce new sufficient conditions for a numerical method to approximate with high order of accuracy the invariant measure of an ergodic system of stochastic differential equations, independently of the weak order of accuracy of the method. We then pre ...
Society for Industrial and Applied Mathematics2014
The characteristic of effective properties of physical processes in heterogeneous media is a basic modeling and computational problem for many applications. As standard numerical discretization of such multiscale problems (e.g. with classical finite elemen ...
Nonlinear modeling of coaxial microhelicopters is studied. All equations are derived using a Lagrangian approach and simplified aerodynamics assumptions so that all parameters have a physical meaning; there is no “black box.” The model is constructed with ...