Protein–protein interactionProtein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and the hydrophobic effect. Many are physical contacts with molecular associations between chains that occur in a cell or in a living organism in a specific biomolecular context. Proteins rarely act alone as their functions tend to be regulated.
ProteinProteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.
Strong dual spaceIn functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) is the continuous dual space of equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of where this topology is denoted by or The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise.
Dual spaceIn mathematics, any vector space has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space.
Glycan-protein interactionsGlycan-Protein interactions represent a class of biomolecular interactions that occur between free or protein-bound glycans and their cognate binding partners. Intramolecular glycan-protein (protein-glycan) interactions occur between glycans and proteins that they are covalently attached to. Together with protein-protein interactions, they form a mechanistic basis for many essential cell processes, especially for cell-cell interactions and host-cell interactions.
Duality (mathematics)In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry. In mathematical contexts, duality has numerous meanings.
Protein quaternary structureProtein quaternary structure is the fourth (and highest) classification level of protein structure. Protein quaternary structure refers to the structure of proteins which are themselves composed of two or more smaller protein chains (also referred to as subunits). Protein quaternary structure describes the number and arrangement of multiple folded protein subunits in a multi-subunit complex. It includes organizations from simple dimers to large homooligomers and complexes with defined or variable numbers of subunits.
Dual systemIn mathematics, a dual system, dual pair, or duality over a field is a triple consisting of two vector spaces and over and a non-degenerate bilinear map . Duality theory, the study of dual systems, is part of functional analysis. It is separate and distinct to Dual-system Theory in psychology. Pairings A or pair over a field is a triple which may also be denoted by consisting of two vector spaces and over (which this article assumes is the field either of real numbers or the complex numbers ).
Hydrogen bondIn chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a lone pair of electrons—the hydrogen bond acceptor (Ac). Such an interacting system is generally denoted , where the solid line denotes a polar covalent bond, and the dotted or dashed line indicates the hydrogen bond.
Pontryagin dualityIn mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group (the multiplicative group of complex numbers of modulus one), the finite abelian groups (with the discrete topology), and the additive group of the integers (also with the discrete topology), the real numbers, and every finite dimensional vector space over the reals or a p-adic field.