In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group (the multiplicative group of complex numbers of modulus one), the finite abelian groups (with the discrete topology), and the additive group of the integers (also with the discrete topology), the real numbers, and every finite dimensional vector space over the reals or a p-adic field.
The Pontryagin dual of a locally compact abelian group is the locally compact abelian topological group formed by the continuous group homomorphisms from the group to the circle group with the operation of pointwise multiplication and the topology of uniform convergence on compact sets. The Pontryagin duality theorem establishes Pontryagin duality by stating that any locally compact abelian group is naturally isomorphic with its bidual (the dual of its dual). The Fourier inversion theorem is a special case of this theorem.
The subject is named after Lev Pontryagin who laid down the foundations for the theory of locally compact abelian groups and their duality during his early mathematical works in 1934. Pontryagin's treatment relied on the groups being second-countable and either compact or discrete. This was improved to cover the general locally compact abelian groups by Egbert van Kampen in 1935 and André Weil in 1940.
Pontryagin duality places in a unified context a number of observations about functions on the real line or on finite abelian groups:
Suitably regular complex-valued periodic functions on the real line have Fourier series and these functions can be recovered from their Fourier series;
Suitably regular complex-valued functions on the real line have Fourier transforms that are also functions on the real line and, just as for periodic functions, these functions can be recovered from their Fourier transforms; and
Complex-valued functions on a finite abelian group have discrete Fourier transforms, which are functions on the dual group, which is a (non-canonically) isomorphic group.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
In mathematics, a character is (most commonly) a special kind of function from a group to a field (such as the complex numbers). There are at least two distinct, but overlapping meanings. Other uses of the word "character" are almost always qualified. multiplicative character A multiplicative character (or linear character, or simply character) on a group G is a group homomorphism from G to the multiplicative group of a field , usually the field of complex numbers.
In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This measure was introduced by Alfréd Haar in 1933, though its special case for Lie groups had been introduced by Adolf Hurwitz in 1897 under the name "invariant integral". Haar measures are used in many parts of analysis, number theory, group theory, representation theory, statistics, probability theory, and ergodic theory.
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, and topological algebraic geometry.
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, topological algebraic geometry and t
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
We establish new results on the weak containment of quasi-regular and Koopman representations of a second countable locally compact group GG associated with nonsingular GG-spaces. We deduce that any two boundary representations of a hyperbolic locally ...
Through the use of the piecewise-linearity condition of the total energy, we correct the self-interaction for the study of polarons by constructing nonempirical functionals at the semilocal level of theory. We consider two functionals, the gamma DFT and mu ...
Aip Publishing2024
,
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...