Glycan-Protein interactions represent a class of biomolecular interactions that occur between free or protein-bound glycans and their cognate binding partners. Intramolecular glycan-protein (protein-glycan) interactions occur between glycans and proteins that they are covalently attached to. Together with protein-protein interactions, they form a mechanistic basis for many essential cell processes, especially for cell-cell interactions and host-cell interactions. For instance, SARS-CoV-2, the causative agent of COVID-19, employs its extensively glycosylated spike (S) protein to bind to the ACE2 receptor, allowing it to enter host cells. The spike protein is a trimeric structure, with each subunit containing 22 N-glycosylation sites, making it an attractive target for vaccine search.
Glycosylation, i.e., the addition of glycans (a generic name for monosaccharides and oligosaccharides) to a protein, is one of the major post-translational modification of proteins contributing to the enormous biological complexity of life. Indeed, three different hexoses could theoretically produce from 1056 to 27,648 unique trisaccharides in contrast to only 6 peptides or oligonucleotides formed from 3 amino acids or 3 nucleotides respectively. In contrast to template-driven protein biosynthesis, the "language" of glycosylation is still unknown, making glycobiology a hot topic of current research given their prevalence in living organisms.
The study of glycan-protein interactions provides insight into the mechanisms of cell-signaling and allows to create better-diagnosing tools for many diseases, including cancer. Indeed, there are no known types of cancer that do not involve erratic patterns of protein glycosylation.
Dissociation constant
The binding of glycan-binding proteins (GBPs) to glycans could be modeled with simple equilibrium.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores predicting protein structure from sequence data using maximum entropy modeling and discusses recent advancements in protein structure prediction.
Explores covalent lipid modifications of proteins and their role in protein-membrane interactions, including the biochemistry of membrane proteins and the challenges of studying them.
Spike (S) glycoprotein (sometimes also called spike protein, formerly known as E2) is the largest of the four major structural proteins found in coronaviruses. The spike protein assembles into trimers that form large structures, called spikes or peplomers, that project from the surface of the virion. The distinctive appearance of these spikes when visualized using negative stain transmission electron microscopy, "recalling the solar corona", gives the virus family its main name.
Proteins are foundational biomolecules of life playing a crucial role in a myriad of biological processes. Their function often requires interplay with other biomolecules, including proteins themselves. Protein-protein interactions (PPIs) are essential for ...
Post-translational modifications (PTMs) play a pivotal role in regulating protein structure, interaction, and function. Aberrant PTM patterns are associated with diseases. Moreover, individual PTMs have a complex interaction with each other, known as PTM c ...
In the domain of computational structural biology, predicting protein interactions based on molecular structure remains a pivotal challenge. This thesis delves into this challenge through a series of interconnected studies.The first chapter introduces the ...