Recoupling of heteronuclear dipolar interactions in solid state magic-angle spinning NMR by simultaneous frequency and amplitude modulation
Related publications (54)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The spin echo is the single most important building block in modern NMR spectroscopy, but echo modulation by scalar couplings J can severely complicate its use. We show for the first time that a general but unacknowledged solution to such complications alr ...
We explain how and under which conditions it is possible to obtain an efficient inversion of an entire sideband family of several hundred kHz using low-power, sideband-selective adiabatic pulses, and we illustrate with some experimental results how this fr ...
Developments towards an understanding of the nature of conductance at the interface between two different metallic layers – ferromagnetic and non magnetic – as well as the discovery of giant magnetoresistance have stirred attention from both the scientific ...
In systems with homonuclear scalar couplings, the envelopes of spin echoes obtained with simple refocusing pulses or trains of such pulses are normally modulated so that it is difficult to extract transverse relaxation rates. It has been shown recently tha ...
We explore the effects of symmetry on the performance of phase-modulated homonuclear dipolar decoupling in H-1 solid-state NMR. We demonstrate that the symmetry of the DUMBO family of decoupling sequences is the result of two well-defined symmetry expansio ...
Nuclear magnetic resonance (NMR) was discovered in the first half of the 20th century. Today, neither analytical chemistry without NMR spectroscopy nor medical diagnostics without magnetic resonance imaging (MRI) could be imagined. A magnetic resonance sig ...
PARIS recoupling irradiation, despite a tow rf amplitude, can promote efficient magnetization transfer during solid-state NMR experiments at 900 MHz over a wide range of differences in isotropic chemical shifts in microcrystalline proteins. ...
This thesis describes new methods for the detection of 14N nuclei by solid-state nuclear magnetic resonance. So far, the low natural abundance (0.4 %) 15N isotope has been widely used to study nitrogen-containing samples because of its spin-1/2 nature. The ...
We propose a new framework for homonuclear dipolar decoupling in solid-state NMR that provides a theoretical link between the FSLG, PMLG and DUMBO families. We show that through the use of a Legendre polynomial basis, the phase modulation of these decoupli ...
In recent years there has been a strong effort to reduce the size and power consumption of vapour cell atomic clocks [1,2]. The progress in this direction is driven by several factors such as the use low power laser diodes (VCSEL), Coherent Population Trap ...