Data modelA data model is an abstract model that organizes elements of data and standardizes how they relate to one another and to the properties of real-world entities. For instance, a data model may specify that the data element representing a car be composed of a number of other elements which, in turn, represent the color and size of the car and define its owner. The corresponding professional activity is called generally data modeling or, more specifically, database design.
Gaussian blurIn , a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce and reduce detail. The visual effect of this blurring technique is a smooth blur resembling that of viewing the image through a translucent screen, distinctly different from the bokeh effect produced by an out-of-focus lens or the shadow of an object under usual illumination.
Inner regular measureIn mathematics, an inner regular measure is one for which the measure of a set can be approximated from within by compact subsets. Let (X, T) be a Hausdorff topological space and let Σ be a σ-algebra on X that contains the topology T (so that every open set is a measurable set, and Σ is at least as fine as the Borel σ-algebra on X). Then a measure μ on the measurable space (X, Σ) is called inner regular if, for every set A in Σ, This property is sometimes referred to in words as "approximation from within by compact sets.
Gaussian measureIn mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space Rn, closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the German mathematician Carl Friedrich Gauss. One reason why Gaussian measures are so ubiquitous in probability theory is the central limit theorem. Loosely speaking, it states that if a random variable X is obtained by summing a large number N of independent random variables of order 1, then X is of order and its law is approximately Gaussian.