In mathematics, an inner regular measure is one for which the measure of a set can be approximated from within by compact subsets.
Let (X, T) be a Hausdorff topological space and let Σ be a σ-algebra on X that contains the topology T (so that every open set is a measurable set, and Σ is at least as fine as the Borel σ-algebra on X). Then a measure μ on the measurable space (X, Σ) is called inner regular if, for every set A in Σ,
This property is sometimes referred to in words as "approximation from within by compact sets."
Some authors use the term tight as a synonym for inner regular. This use of the term is closely related to tightness of a family of measures, since a finite measure μ is inner regular if and only if, for all ε > 0, there is some compact subset K of X such that μ(X \ K) < ε. This is precisely the condition that the singleton collection of measures {μ} is tight.
When the real line R is given its usual Euclidean topology,
Lebesgue measure on R is inner regular; and
Gaussian measure (the normal distribution on R) is an inner regular probability measure.
However, if the topology on R is changed, then these measures can fail to be inner regular. For example, if R is given the lower limit topology (which generates the same σ-algebra as the Euclidean topology), then both of the above measures fail to be inner regular, because compact sets in that topology are necessarily countable, and hence of measure zero.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets. Let (X, T) be a topological space and let Σ be a σ-algebra on X. Let μ be a measure on (X, Σ). A measurable subset A of X is said to be inner regular if and said to be outer regular if A measure is called inner regular if every measurable set is inner regular.
In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space Rn, closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the German mathematician Carl Friedrich Gauss. One reason why Gaussian measures are so ubiquitous in probability theory is the central limit theorem. Loosely speaking, it states that if a random variable X is obtained by summing a large number N of independent random variables of order 1, then X is of order and its law is approximately Gaussian.
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.
I show how conditional Gaussians, whose means are conditioned by a random variable, can be estimated and their likelihoods computed. This is based upon how regular Gaussians have their own parameters and likelihood computed. After explaining how to estimat ...
The placement of replicas across storage nodes in a replication-based storage system is known to affect rebuild times and therefore system reliability. Earlier work has shown that, for a replication factor of two, the reliability is essentially unaffected ...
We report here torsional analysis of rotationally resolved spectra of the 3 nu(1), 5 nu(1), and 6 nu(1) (OH stretch) bands of jet-cooled methanol. The upper states are reached by a double resonance excitation scheme involving the selection of single rotati ...