Time complexityIn computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.
Finite-state machineA finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of states at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a transition. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition.
Nondeterministic finite automatonIn automata theory, a finite-state machine is called a deterministic finite automaton (DFA), if each of its transitions is uniquely determined by its source state and input symbol, and reading an input symbol is required for each state transition. A nondeterministic finite automaton (NFA), or nondeterministic finite-state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. Sometimes the term NFA is used in a narrower sense, referring to an NFA that is not a DFA, but not in this article.
Deterministic finite automatonIn the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running through a state sequence uniquely determined by the string. Deterministic refers to the uniqueness of the computation run.
Two-way finite automatonIn computer science, in particular in automata theory, a two-way finite automaton is a finite automaton that is allowed to re-read its input. A two-way deterministic finite automaton (2DFA) is an abstract machine, a generalized version of the deterministic finite automaton (DFA) which can revisit characters already processed. As in a DFA, there are a finite number of states with transitions between them based on the current character, but each transition is also labelled with a value indicating whether the machine will move its position in the input to the left, right, or stay at the same position.
Quantum finite automatonIn quantum computing, quantum finite automata (QFA) or quantum state machines are a quantum analog of probabilistic automata or a Markov decision process. They provide a mathematical abstraction of real-world quantum computers. Several types of automata may be defined, including measure-once and measure-many automata. Quantum finite automata can also be understood as the quantization of subshifts of finite type, or as a quantization of Markov chains. QFAs are, in turn, special cases of geometric finite automata or topological finite automata.
Alternating finite automatonIn automata theory, an alternating finite automaton (AFA) is a nondeterministic finite automaton whose transitions are divided into existential and universal transitions. For example, let A be an alternating automaton. For an existential transition , A nondeterministically chooses to switch the state to either or , reading a. Thus, behaving like a regular nondeterministic finite automaton. For a universal transition , A moves to and , reading a, simulating the behavior of a parallel machine.
Unambiguous finite automatonIn automata theory, an unambiguous finite automaton (UFA) is a nondeterministic finite automaton (NFA) such that each word has at most one accepting path. Each deterministic finite automaton (DFA) is an UFA, but not vice versa. DFA, UFA, and NFA recognize exactly the same class of formal languages. On the one hand, an NFA can be exponentially smaller than an equivalent DFA. On the other hand, some problems are easily solved on DFAs and not on UFAs.
Tree automatonA tree automaton is a type of state machine. Tree automata deal with tree structures, rather than the strings of more conventional state machines. The following article deals with branching tree automata, which correspond to regular languages of trees. As with classical automata, finite tree automata (FTA) can be either a deterministic automaton or not. According to how the automaton processes the input tree, finite tree automata can be of two types: (a) bottom up, (b) top down.
Worst-case complexityIn computer science (specifically computational complexity theory), the worst-case complexity measures the resources (e.g. running time, memory) that an algorithm requires given an input of arbitrary size (commonly denoted as n in asymptotic notation). It gives an upper bound on the resources required by the algorithm. In the case of running time, the worst-case time complexity indicates the longest running time performed by an algorithm given any input of size n, and thus guarantees that the algorithm will finish in the indicated period of time.