Radiation protectionRadiation protection, also known as radiological protection, is defined by the International Atomic Energy Agency (IAEA) as "The protection of people from harmful effects of exposure to ionizing radiation, and the means for achieving this". Exposure can be from a source of radiation external to the human body or due to internal irradiation caused by the ingestion of radioactive contamination. Ionizing radiation is widely used in industry and medicine, and can present a significant health hazard by causing microscopic damage to living tissue.
Electromagnetic radiationIn physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. Types of EMR include radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays, all of which are part of the electromagnetic spectrum. Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields.
Thermodynamic limitIn statistical mechanics, the thermodynamic limit or macroscopic limit, of a system is the limit for a large number N of particles (e.g., atoms or molecules) where the volume is taken to grow in proportion with the number of particles. The thermodynamic limit is defined as the limit of a system with a large volume, with the particle density held fixed. In this limit, macroscopic thermodynamics is valid.
Gauge theoryIn physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups). The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators.
Partition function (quantum field theory)In quantum field theory, partition functions are generating functionals for correlation functions, making them key objects of study in the path integral formalism. They are the imaginary time versions of statistical mechanics partition functions, giving rise to a close connection between these two areas of physics. Partition functions can rarely be solved for exactly, although free theories do admit such solutions. Instead, a perturbative approach is usually implemented, this being equivalent to summing over Feynman diagrams.
Information asymmetryIn contract theory and economics, information asymmetry deals with the study of decisions in transactions where one party has more or better information than the other. Information asymmetry creates an imbalance of power in transactions, which can sometimes cause the transactions to be inefficient, causing market failure in the worst case. Examples of this problem are adverse selection, moral hazard, and monopolies of knowledge. A common way to visualise information asymmetry is with a scale, with one side being the seller and the other the buyer.
MicroscopeA microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisible to the eye unless aided by a microscope. There are many types of microscopes, and they may be grouped in different ways.
Classical economicsClassical economics, classical political economy, or Smithian economics is a school of thought in political economy that flourished, primarily in Britain, in the late 18th and early-to-mid 19th century. Its main thinkers are held to be Adam Smith, Jean-Baptiste Say, David Ricardo, Thomas Robert Malthus, and John Stuart Mill. These economists produced a theory of market economies as largely self-regulating systems, governed by natural laws of production and exchange (famously captured by Adam Smith's metaphor of the invisible hand).
Schwinger's quantum action principleThe Schwinger's quantum action principle is a variational approach to quantum mechanics and quantum field theory. This theory was introduced by Julian Schwinger in a series of articles starting 1950. In Schwingers approach, the action principle is targeted towards quantum mechanics. The action becomes a quantum action, i.e. an operator, . Although it is superficially different from the path integral formulation where the action is a classical function, the modern formulation of the two formalisms are identical.
Detailed balanceThe principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes (collisions, or steps, or elementary reactions). It states that at equilibrium, each elementary process is in equilibrium with its reverse process. The principle of detailed balance was explicitly introduced for collisions by Ludwig Boltzmann. In 1872, he proved his H-theorem using this principle. The arguments in favor of this property are founded upon microscopic reversibility.