Chemical equilibriumIn a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products.
Thermodynamic temperatureThermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics. Historically, thermodynamic temperature was defined by Lord Kelvin in terms of a macroscopic relation between thermodynamic work and heat transfer as defined in thermodynamics, but the kelvin was redefined by international agreement in 2019 in terms of phenomena that are now understood as manifestations of the kinetic energy of free motion of microscopic particles such as atoms, molecules, and electrons.
Timeline of thermodynamicsA timeline of events in the history of thermodynamics. 1650 – Otto von Guericke builds the first vacuum pump 1660 – Robert Boyle experimentally discovers Boyle's Law, relating the pressure and volume of a gas (published 1662) 1665 – Robert Hooke published his book Micrographia, which contained the statement: "Heat being nothing else but a very brisk and vehement agitation of the parts of a body." 1667 – J. J. Becher puts forward a theory of combustion involving combustible earth in his book Physica subterranea (see Phlogiston theory).
Work (thermodynamics)Thermodynamic work is one of the principal processes by which a thermodynamic system can interact with its surroundings and exchange energy. This exchange results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, or cause changes in electromagnetic, or gravitational variables. The surroundings also can perform work on a thermodynamic system, which is measured by an opposite sign convention.
Thermodynamic stateIn thermodynamics, a thermodynamic state of a system is its condition at a specific time; that is, fully identified by values of a suitable set of parameters known as state variables, state parameters or thermodynamic variables. Once such a set of values of thermodynamic variables has been specified for a system, the values of all thermodynamic properties of the system are uniquely determined. Usually, by default, a thermodynamic state is taken to be one of thermodynamic equilibrium.
Thermodynamic betaIn statistical thermodynamics, thermodynamic beta, also known as coldness, is the reciprocal of the thermodynamic temperature of a system: (where T is the temperature and kB is Boltzmann constant). It was originally introduced in 1971 (as Kältefunktion "coldness function") by de, one of the proponents of the rational thermodynamics school of thought, based on earlier proposals for a "reciprocal temperature" function. Thermodynamic beta has units reciprocal to that of energy (in SI units, reciprocal joules, ).
Thermodynamic processClassical thermodynamics considers three main kinds of thermodynamic process: (1) changes in a system, (2) cycles in a system, and (3) flow processes. (1)A Thermodynamic process is a process in which the thermodynamic state of a system is changed. A change in a system is defined by a passage from an initial to a final state of thermodynamic equilibrium. In classical thermodynamics, the actual course of the process is not the primary concern, and often is ignored.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Thermodynamic systemA thermodynamic system is a body of matter and/or radiation, considered as separate from its surroundings, and studied using the laws of thermodynamics. Thermodynamic systems may be isolated, closed, or open. An isolated system exchanges no matter or energy with its surroundings, whereas a closed system does not exchange matter but may exchange heat and experience and exert forces. An open system can interact with its surroundings by exchanging both matter and energy.
Helmholtz free energyIn thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium.