Feature (machine learning)In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a phenomenon. Choosing informative, discriminating and independent features is a crucial element of effective algorithms in pattern recognition, classification and regression. Features are usually numeric, but structural features such as strings and graphs are used in syntactic pattern recognition. The concept of "feature" is related to that of explanatory variable used in statistical techniques such as linear regression.
Connection (mathematics)In geometry, the notion of a connection makes precise the idea of transporting local geometric objects, such as tangent vectors or tensors in the tangent space, along a curve or family of curves in a parallel and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport. For instance, an affine connection, the most elementary type of connection, gives a means for parallel transport of tangent vectors on a manifold from one point to another along a curve.
Multilinear subspace learningMultilinear subspace learning is an approach for disentangling the causal factor of data formation and performing dimensionality reduction. The Dimensionality reduction can be performed on a data tensor that contains a collection of observations have been vectorized, or observations that are treated as matrices and concatenated into a data tensor. Here are some examples of data tensors whose observations are vectorized or whose observations are matrices concatenated into data tensor s (2D/3D), video sequences (3D/4D), and hyperspectral cubes (3D/4D).
Elastic mapElastic maps provide a tool for nonlinear dimensionality reduction. By their construction, they are a system of elastic springs embedded in the data space. This system approximates a low-dimensional manifold. The elastic coefficients of this system allow the switch from completely unstructured k-means clustering (zero elasticity) to the estimators located closely to linear PCA manifolds (for high bending and low stretching modules). With some intermediate values of the elasticity coefficients, this system effectively approximates non-linear principal manifolds.
One-dimensional spaceIn physics and mathematics, a sequence of n numbers can specify a location in n-dimensional space. When n = 1, the set of all such locations is called a one-dimensional space. An example of a one-dimensional space is the number line, where the position of each point on it can be described by a single number. In algebraic geometry there are several structures that are technically one-dimensional spaces but referred to in other terms. A field k is a one-dimensional vector space over itself.
Euler methodIn mathematics and computational science, the Euler method (also called the forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who first proposed it in his book Institutionum calculi integralis (published 1768–1870).
Connection formIn mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms. Historically, connection forms were introduced by Élie Cartan in the first half of the 20th century as part of, and one of the principal motivations for, his method of moving frames. The connection form generally depends on a choice of a coordinate frame, and so is not a tensorial object.
Connection (principal bundle)In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection.
Feature engineeringFeature engineering or feature extraction or feature discovery is the process of extracting features (characteristics, properties, attributes) from raw data. Due to deep learning networks, such as convolutional neural networks, that are able to learn it by itself, domain-specific- based feature engineering has become obsolete for vision and speech processing.
Connection (vector bundle)In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero.