Large-scale networked systems often, both by design or chance exhibit self-organizing properties. Understanding self-organization using tools from cybernetics, particularly modeling them as Markov processes is a first step towards a formal framework which can be used in (decentralized) systems research and design.Interesting aspects to look for include the time evolution of a system and to investigate if and when a system converges to some absorbing states or stabilizes into a dynamic (and stable) equilibrium and how it performs under such an equilibrium state. Such a formal framework brings in objectivity in systems research, helping discern facts from artefacts as well as providing tools for quantitative evaluation of such systems. This thesis introduces such formalism in analyzing and evaluating peer-to-peer (P2P) systems in order to better understand the dynamics of such systems which in turn helps in better designs. In particular this thesis develops and studies the fundamental building blocks for a P2P storage system. In the process the design and evaluation methodology we pursue illustrate the typical methodological approaches in studying and designing self-organizing systems, and how the analysis methodology influences the design of the algorithms themselves to meet system design goals (preferably with quantifiable guarantees). These goals include efficiency, availability and durability, load-balance, high fault-tolerance and self-maintenance even in adversarial conditions like arbitrarily skewed and dynamic load and high membership dynamics (churn), apart of-course the specific functionalities that the system is supposed to provide. The functionalities we study here are some of the fundamental building blocks for various P2P applications and systems including P2P storage systems, and hence we call them substrates or base infrastructure. These elemental functionalities include: (i) Reliable and efficient discovery of resources distributed over the network in a decentralized manner; (ii) Communication among participants in an address independent manner, i.e., even when peers change their physical addresses; (iii) Availability and persistence of stored objects in the network, irrespective of availability or departure of individual participants from the system at any time; and (iv) Freshness of the objects/resources' (up-to-date replicas). Internet-scale distributed index structures (often termed as structured overlays) are used for discovery and access of resources in a decentralized setting. We propose a rapid construction from scratch and maintenance of the P-Grid overlay network in a self-organized manner so as to provide efficient search of both individual keys as well as a whole range of keys, doing so providing good load-balancing characteristics for diverse kind of arbitrarily skewed loads - storage and replication, query forwarding and query answering loads. For fast overlay construction we employ recursive partitioning of the key-s
Verónica del Carmen Estrada Galiñanes, Arman Babaei
David Atienza Alonso, Marina Zapater Sancho, Luis Maria Costero Valero, Darong Huang, Qunyou Liu