Publication

Hybrid Ultrasonic Motor and Electrorheological Clutch System for MR-Compatible Haptic Rendering

Abstract

Using haptic interfaces in combination with functional magnetic resonance imaging (fMRI) could lead to important insights into the brain mechanisms of human motor control and related dysfunctions. However, in addition to the usual requirements for haptic interfaces (e.g. smooth force control, back-drivability, low friction and inertia) these devices must also be MR safe and MR compatible. Previous MR-compatible actuation methods for force-feedback present drawbacks with respect to conventional haptic interfaces. Here, we present a novel MR-compatible actuator designed especially for impedance control and to meet the requirements for haptic interfaces. It consists of an ultrasonic motor controlled in speed combined with an electrorheological fluid brake which modulates the output torque over a differential gear. The entire system is integrated into a compact housing with an encoder at the output.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.