Message passingIn computer science, message passing is a technique for invoking behavior (i.e., running a program) on a computer. The invoking program sends a message to a process (which may be an actor or object) and relies on that process and its supporting infrastructure to then select and run some appropriate code. Message passing differs from conventional programming where a process, subroutine, or function is directly invoked by name. Message passing is key to some models of concurrency and object-oriented programming.
Consensus (computer science)A fundamental problem in distributed computing and multi-agent systems is to achieve overall system reliability in the presence of a number of faulty processes. This often requires coordinating processes to reach consensus, or agree on some data value that is needed during computation. Example applications of consensus include agreeing on what transactions to commit to a database in which order, state machine replication, and atomic broadcasts.
Distributed computingA distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another. Distributed computing is a field of computer science that studies distributed systems. The components of a distributed system interact with one another in order to achieve a common goal. Three significant challenges of distributed systems are: maintaining concurrency of components, overcoming the lack of a global clock, and managing the independent failure of components.
Message Passing InterfaceMessage Passing Interface (MPI) is a standardized and portable message-passing standard designed to function on parallel computing architectures. The MPI standard defines the syntax and semantics of library routines that are useful to a wide range of users writing portable message-passing programs in C, C++, and Fortran. There are several open-source MPI implementations, which fostered the development of a parallel software industry, and encouraged development of portable and scalable large-scale parallel applications.
Upper and lower boundsIn mathematics, particularly in order theory, an upper bound or majorant of a subset S of some preordered set (K, ≤) is an element of K that is greater than or equal to every element of S. Dually, a lower bound or minorant of S is defined to be an element of K that is less than or equal to every element of S. A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound.
Communicating sequential processesIn computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels. CSP was highly influential in the design of the occam programming language and also influenced the design of programming languages such as Limbo, RaftLib, Erlang, Go, Crystal, and Clojure's core.async.
Message-oriented middlewareMessage-oriented middleware (MOM) is software or hardware infrastructure supporting sending and receiving messages between distributed systems. MOM allows application modules to be distributed over heterogeneous platforms and reduces the complexity of developing applications that span multiple operating systems and network protocols. The middleware creates a distributed communications layer that insulates the application developer from the details of the various operating systems and network interfaces.
Complete metric spaceIn mathematical analysis, a metric space M is called complete (or a Cauchy space) if every Cauchy sequence of points in M has a limit that is also in M. Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below).
Inter-process communicationIn computer science, inter-process communication (IPC), also spelled interprocess communication, are the mechanisms provided by an operating system for processes to manage shared data. Typically, applications can use IPC, categorized as clients and servers, where the client requests data and the server responds to client requests. Many applications are both clients and servers, as commonly seen in distributed computing. IPC is very important to the design process for microkernels and nanokernels, which reduce the number of functionalities provided by the kernel.
Infimum and supremumIn mathematics, the infimum (abbreviated inf; plural infima) of a subset of a partially ordered set is the greatest element in that is less than or equal to each element of if such an element exists. In other words, it is the greatest element of that is lower or equal to the lowest element of . Consequently, the term greatest lower bound (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset of a partially ordered set is the least element in that is greater than or equal to each element of if such an element exists.