Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
When a classical conservation law is broken by quantum corrections, the associated symmetry is said to be anomalous. This type of symmetry breaking can lead to interesting physics. For instance in strong interactions, the anomaly in the chiral current is important in the pion decay to two photons. In weak interactions, there is an anomaly in the baryon number current. Although anomalous baryon number violating transitions are strongly suppressed at small energies, they could be at the origin of the baryon asymmetry of the universe. In this thesis, we consider several issues related to the theoretical and phenomenological aspects of anomalies. Although our main aim is the study of the electroweak theory, most of the theoretical questions do not rely on its precise setup. In order to solve these problems, we design a 1+1 dimensional chiral Abelian Higgs model displaying similar nonperturbative physics as the electroweak theory and leading to many simplifications. This model contains sphaleron and instanton transitions and, as the electroweak theory, leads to anomalous fermion number nonconservation. The one-loop fermionic contribution to the probability of an instanton transition with fermion number violation is calculated in the chiral Abelian Higgs model where the fermions have a Yukawa coupling to the scalar field. These contributions are given by the determinant of the fermionic fluctuations. The dependence of the determinant on fermionic, scalar and vector mass is determined. We also show in detail how to renormalize the fermionic determinant in partial wave analysis. The 1+1 dimensional model has the remarkable property to enable the creation of an odd number of fractionally charged fermions. We point out that for 1+1 dimensions this process does not violate any symmetries of the theory, nor does it lead to any mathematical inconsistencies. We construct the proper definition of the fermionic determinant in this model and underline its non-trivial features that are of importance for realistic 3+1 dimensional models with fermion number violation. In theories with anomalous fermion number nonconservation, the level crossing picture is considered a faithful representation of the fermionic quantum number variation. It represents each created fermion by an energy level that crosses the zero-energy line from below. If several fermions of various masses are created, the level crossing picture contains several levels that cross the zero-energy line and cross each other. However, we know from quantum mechanics that the corresponding levels cannot cross if the different fermions are mixed via some interaction potential. The simultaneous application of these two requirements on the level behavior leads to paradoxes. For instance, a naive interpretation of the resulting level crossing picture gives rise to charge nonconservation. We resolve this paradox by a precise calculation of the transition probability, and discuss what are the implications for the electroweak theory. In particular, the nonperturbative transition probability is higher if top quarks are present in the initial state. Coming back to the electroweak theory, we point out that the results of many baryogenesis scenarios operating at or below the TeV scale are rather sensitive to the rate of anomalous fermion number violation across the electroweak crossover. Assuming the validity of the Standard Model of electroweak interactions, we estimate this rate for experimentally allowed values of the Higgs mass (mH = 100…300 GeV). We also discuss where the rate enters in the particle density evolution and how to compute the leading baryonic asymmetry.
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Arvind Shah, Rakesh Chawla, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Peter Hansen, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Kun Shi, Wei Shi, Abhisek Datta, Wei Sun, Jian Zhao, Thomas Berger, Federica Legger, Bandeep Singh, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Francesco Fiori, Meng Xiao, Sourav Sen, Viktor Khristenko, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Maren Tabea Meinhard, Giorgia Rauco, Ali Harb, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer