Maximum spacing estimationIn statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.
EstimationEstimation (or estimating) is the process of finding an estimate or approximation, which is a value that is usable for some purpose even if input data may be incomplete, uncertain, or unstable. The value is nonetheless usable because it is derived from the best information available. Typically, estimation involves "using the value of a statistic derived from a sample to estimate the value of a corresponding population parameter".
Linear trend estimationLinear trend estimation is a statistical technique to aid interpretation of data. When a series of measurements of a process are treated as, for example, a sequences or time series, trend estimation can be used to make and justify statements about tendencies in the data, by relating the measurements to the times at which they occurred. This model can then be used to describe the behaviour of the observed data, without explaining it.
Data transformation (statistics)In statistics, data transformation is the application of a deterministic mathematical function to each point in a data set—that is, each data point zi is replaced with the transformed value yi = f(zi), where f is a function. Transforms are usually applied so that the data appear to more closely meet the assumptions of a statistical inference procedure that is to be applied, or to improve the interpretability or appearance of graphs. Nearly always, the function that is used to transform the data is invertible, and generally is continuous.
Dimensional reductionDimensional reduction is the limit of a compactified theory where the size of the compact dimension goes to zero. In physics, a theory in D spacetime dimensions can be redefined in a lower number of dimensions d, by taking all the fields to be independent of the location in the extra D − d dimensions. For example, consider a periodic compact dimension with period L. Let x be the coordinate along this dimension. Any field can be described as a sum of the following terms: with An a constant.
Elastic mapElastic maps provide a tool for nonlinear dimensionality reduction. By their construction, they are a system of elastic springs embedded in the data space. This system approximates a low-dimensional manifold. The elastic coefficients of this system allow the switch from completely unstructured k-means clustering (zero elasticity) to the estimators located closely to linear PCA manifolds (for high bending and low stretching modules). With some intermediate values of the elasticity coefficients, this system effectively approximates non-linear principal manifolds.
Estimation (project management)In project management (e.g., for engineering), accurate estimates are the basis of sound project planning. Many processes have been developed to aid engineers in making accurate estimates, such as Analogy based estimation Compartmentalization (i.e., breakdown of tasks) Cost estimate Delphi method Documenting estimation results Educated assumptions Estimating each task Examining historical data Identifying dependencies Parametric estimating Risk assessment Structured planning Popular estimation processes fo