Spectral reflection and dot surface prediction models for color halftone prints
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Most halftoning techniques allow screen dots to overlap. They rely on the assumption that the inks are transparent, i.e. the inks do not scatter a significant portion of the light back to the air. However, many special effect inks such as metallic inks, ir ...
The Yule-Nielsen modified spectral Neugebauer model enhanced for accounting for ink spreading in the different ink superposition conditions (EYNSN) requires measuring the reflectances of halftone calibration patches in order to compute the ink spreading cu ...
In this contribution we describe the application of Ink-Jet printing and Stencil Lithography in bionanotechnology. Both techniques are alternative patterning methods that can be used for the fabrication of biocompatible micro- and nanostructures out of the ...
Spectral prediction models for halftone prints generally assume homogeneously thick and sharply edged ink dots, i.e., bilevel halftones. In real prints, the ink thickness often decreases at the boundaries of the ink dots, thereby forming continuous-level h ...
Different inks may have different mechanical and/or optical properties. Existing Yule-Nielsen modified Neugebauer spectral prediction models assume however that the inks forming a color halftone behave similarly, i.e. that a single n-factor can model the l ...
Most existing techniques for regulating the ink flow in offset presses rely oil density measurements carried out oil specially printed patches. In the present contribution. we develop a methodology to deduce ink thickness variations from spectral measureme ...
By printing a variable number of droplets onto the same pixel location, ink jet printers produce pixels at variable dot-sizes yielding several darkness levels. Varying the number of printed droplets affects the ink volume deposited onto the substrate. In t ...
The Yule-Nielsen modified spectral Neugebauer model (YNSN) enables predicting reflectance spectra from ink surface coverages of halftones. In order to provide an improved prediction accuracy, this model is enhanced with an ink spreading model accounting fo ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2011
The Yule-Nielsen modified spectral Neugebauer model enables predicting reflectance spectra from surface coverages. In order to provide high prediction accuracy, this model is enhanced with an ink spreading model accounting for physical dot gain. Traditiona ...
We propose a full reproduction workflow for printing color images on metallic substrates. It relies on an ink spreading enhanced cellular Yule-Nielsen modified spectral Neugebauer model, calibrated with 35 color samples printed on the metal film and measur ...