Within the field of multi-robot systems, multi-robot search is one area which is currently receiving a lot of research attention. One major challenge within this area is to design effective algorithms that allow a team of robots to work together to find their targets. Recently, techniques have been adopted for multi-robot search from the Particle Swarm Optimization algorithm, which uses a virtual multi-agent search to find optima in a multi-dimensional function space. We present here a multi-search algorithm inspired by Particle Swarm Optimization. Additionally, we exploit this inspiration by modifying the Particle Swarm Optimization algorithm to mimic the multi-robot search process, thereby allowing us to model at an abstracted level the effects of changing aspects and parameters of the system such as number of robots and communication range.