Noise (signal processing)In signal processing, noise is a general term for unwanted (and, in general, unknown) modifications that a signal may suffer during capture, storage, transmission, processing, or conversion. Sometimes the word is also used to mean signals that are random (unpredictable) and carry no useful information; even if they are not interfering with other signals or may have been introduced intentionally, as in comfort noise. Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filters.
Noise (electronics)In electronics, noise is an unwanted disturbance in an electrical signal. Noise generated by electronic devices varies greatly as it is produced by several different effects. In particular, noise is inherent in physics and central to thermodynamics. Any conductor with electrical resistance will generate thermal noise inherently. The final elimination of thermal noise in electronics can only be achieved cryogenically, and even then quantum noise would remain inherent. Electronic noise is a common component of noise in signal processing.
Sparse matrixIn numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of rows or columns. By contrast, if most of the elements are non-zero, the matrix is considered dense. The number of zero-valued elements divided by the total number of elements (e.
Vector multiplicationIn mathematics, vector multiplication may refer to one of several operations between two (or more) vectors. It may concern any of the following articles: Dot product – also known as the "scalar product", a binary operation that takes two vectors and returns a scalar quantity. The dot product of two vectors can be defined as the product of the magnitudes of the two vectors and the cosine of the angle between the two vectors. Alternatively, it is defined as the product of the projection of the first vector onto the second vector and the magnitude of the second vector.
Distributed operating systemA distributed operating system is system software over a collection of independent software, networked, communicating, and physically separate computational nodes. They handle jobs which are serviced by multiple CPUs. Each individual node holds a specific software subset of the global aggregate operating system. Each subset is a composite of two distinct service provisioners. The first is a ubiquitous minimal kernel, or microkernel, that directly controls that node's hardware.
Hermitian adjointIn mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint (or adjoint) operator on that space according to the rule where is the inner product on the vector space. The adjoint may also be called the Hermitian conjugate or simply the Hermitian after Charles Hermite. It is often denoted by A† in fields like physics, especially when used in conjunction with bra–ket notation in quantum mechanics.
Distributed algorithmA distributed algorithm is an algorithm designed to run on computer hardware constructed from interconnected processors. Distributed algorithms are used in different application areas of distributed computing, such as telecommunications, scientific computing, distributed information processing, and real-time process control. Standard problems solved by distributed algorithms include leader election, consensus, distributed search, spanning tree generation, mutual exclusion, and resource allocation.
Unbounded operatorIn mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases. The term "unbounded operator" can be misleading, since "unbounded" should sometimes be understood as "not necessarily bounded"; "operator" should be understood as "linear operator" (as in the case of "bounded operator"); the domain of the operator is a linear subspace, not necessarily the whole space; this linear subspace is not necessarily closed; often (but not always) it is assumed to be dense; in the special case of a bounded operator, still, the domain is usually assumed to be the whole space.
Regularization (mathematics)In mathematics, statistics, finance, computer science, particularly in machine learning and inverse problems, regularization is a process that changes the result answer to be "simpler". It is often used to obtain results for ill-posed problems or to prevent overfitting. Although regularization procedures can be divided in many ways, the following delineation is particularly helpful: Explicit regularization is regularization whenever one explicitly adds a term to the optimization problem.
Impact craterAn impact crater is a circular depression in the surface of a solid astronomical object formed by the hypervelocity impact of a smaller object. In contrast to volcanic craters, which result from explosion or internal collapse, impact craters typically have raised rims and floors that are lower in elevation than the surrounding terrain. Lunar impact craters range from microscopic craters on lunar rocks returned by the Apollo program and small, simple, bowl-shaped depressions in the lunar regolith to large, complex, multi-ringed impact basins.