Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Despite the growing interest in brain-machine interface (BMI)-driven neuroprostheses, the translation of the BMI output into a suitable control signal for the robotic device is often neglected. In this article, we propose a novel control approach based on ...
Brain-Machine interfaces aim to create a direct neural link between user's brain and machines. This goal has pushed scientists to investigate a large spectrum of applications in the realm of assistive and rehabilitation technologies. However, despite great ...
Objective. To study the neural control of movement, it is often necessary to estimate how muscles are activated across a variety of behavioral conditions. One approach is to try extracting the underlying neural command signal to muscles by applying latent ...
Brain-Computer Interfaces (BCIs) enable users to interact with computers without any dedicated movement, bringing new hands-free interaction paradigms. In this paper we study the combination of BCI and Augmented Reality (AR). We first tested the feasibilit ...
Results that do not confirm expectations are generally referred to as 'negative' results. While essential for scientific progress, they are too rarely reported in the literature - Brain-Machine Interface (BMI) research is no exception. This led us to organ ...
Despite the advances in the field of brain computer interfaces (BCI), the use of the sole electroencephalography (EEG) signal to control walking rehabilitation devices is currently not viable in clinical settings, due to its unreliability. Hybrid interface ...
Implanted microelectrode arrays sense local neuronal activity, signals which are used as control commands for brain computer interface (BCI) technology. Patients with tetraplegia have used BCI technology to achieve an extraordinary degree of interaction wi ...
Development of neural interface and brain-machine interface (BMI) systems enables the treatment of neurological disorders including cognitive, sensory, and motor dysfunctions. While neural interfaces have steadily decreased in form factor, recent developme ...
Brain-computer interfaces (BCIs) are neural prosthetics that enable closed-loop electrophysiology procedures. These devices are currently used in fundamental neurophysiology research, and they are moving toward clinical viability for neural rehabilitation. ...
The ability to notice erroneous behavior is crucial for effective training. Within the framework of neuroprosthetics, numerous studies in electroencephalography (EEG) confirm the existence of neural correlates when humans perceive the erroneous actions of ...