Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
The aim of this paper is to define a nonlinear least squares estimator for the spectral parameters of a spherical autoregressive process of order 1 in a parametric setting. Furthermore, we investigate on its asymptotic properties, such as weak consistency ...
2022
Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
We summarize what we consider to be the two main limitations of the "Estimands for Recurrent Event Endpoints in the Presence of a Terminal Event" (Schmidli et al. 2022). First, the authors did not give detailed guidance on how to choose an appropriate esti ...
Statistical models for extreme values are generally derived from non-degenerate probabilistic limits that can be used to approximate the distribution of events that exceed a selected high threshold. If convergence to the limit distribution is slow, then th ...
Confounding variables are a recurrent challenge for causal discovery and inference. In many situations, complex causal mechanisms only manifest themselves in extreme events, or take simpler forms in the extremes. Stimulated by data on extreme river flows a ...
This thesis focuses on two kinds of statistical inference problems in signal processing and data science. The first problem is the estimation of a structured informative tensor from the observation of a noisy tensor in which it is buried. The structure com ...
We discuss the use of likelihood asymptotics for inference on risk measures in univariate extreme value problems, focusing on estimation of high quantiles and similar summaries of risk for uncertainty quantification. We study whether higher-order approxima ...
INST MATHEMATICAL STATISTICS-IMS2022
,
We derive confidence intervals (CIs) and confidence sequences (CSs) for the classical problem of estimating a bounded mean. Our approach generalizes and improves on the celebrated Chernoff method, yielding the best closed-form "empirical-Bernstein" CSs and ...
Oxford2024
Functional time series is a temporally ordered sequence of not necessarily independent random curves. While the statistical analysis of such data has been traditionally carried out under the assumption of completely observed functional data, it may well ha ...