Explore les bases des réseaux neuraux, le problème XOR, la classification et les applications pratiques comme la prévision des données météorologiques.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Explore le développement historique et la formation de perceptrons multicouches, en mettant l'accent sur l'algorithme de rétropropagation et la conception de fonctionnalités.
Explore l'histoire, les modèles, la formation, la convergence et les limites des réseaux neuronaux, y compris l'algorithme de rétropropagation et l'approximation universelle.
Couvre les modèles de séquence à séquence, leur architecture, leurs applications et le rôle des mécanismes d'attention dans l'amélioration des performances.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.