Histoire des sciencesL'histoire des sciences est l’étude de l'évolution de la connaissance scientifique. La science, en tant que corpus de connaissances, mais également comme manière d'aborder et de comprendre le monde, s'est constituée progressivement depuis plusieurs millénaires. C'est aux époques protohistoriques qu'ont commencé à se développer les spéculations intellectuelles visant à élucider les mystères de l'univers. L'histoire des sciences est une discipline qui étudie le mouvement progressif de transformation de ces spéculations et l'accumulation des connaissances qui l'accompagne.
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Théorie des probabilitésLa théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Géométrie algébriqueLa géométrie algébrique est un domaine des mathématiques qui, historiquement, s'est d'abord intéressé à des objets géométriques (courbes, surfaces...) composés des points dont les coordonnées vérifiaient des équations ne faisant intervenir que des sommes et des produits (par exemple le cercle unité dans le plan rapporté à un repère orthonormé admet pour équation ). La simplicité de cette définition fait qu'elle embrasse un grand nombre d'objets et qu'elle permet de développer une théorie riche.
Optimisation combinatoireL’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
ArithmétiqueL'arithmétique est la branche des mathématiques qui étudie les nombres entiers naturels , relatifs et rationnels , voire réels , ainsi que leurs relations et propriétés, en lien avec quelques opérations élémentaires : addition (+), soustraction (−), multiplication (×), division (÷, /, ou :), puissance et racine (). Le terme inclut parfois d'autres concepts de la théorie des nombres. Le mot arithmétique vient du grec ancien , « nombre ». L’origine de l'arithmétique semble être une invention phénicienne.
Analyse réelleL'analyse réelle est la branche de l'analyse qui étudie les ensembles de réels et les fonctions de variables réelles. Elle étudie des concepts comme les suites et leurs limites, la continuité, la dérivation, l'intégration et les suites de fonctions. La présentation de l'analyse réelle dans les ouvrages avancés commence habituellement avec des démonstrations simples de résultats de la théorie naïve des ensembles, une définition claire de la notion de fonction, une introduction aux entiers naturels et la démonstration importante du raisonnement par récurrence.
Théorie du chaosLa théorie du chaos est une théorie scientifique rattachée aux mathématiques et à la physique qui étudie le comportement des systèmes dynamiques sensibles aux conditions initiales, un phénomène généralement illustré par l'effet papillon. Dans de nombreux systèmes dynamiques, des modifications infimes des conditions initiales entraînent des évolutions rapidement divergentes, rendant toute prédiction impossible à long terme.