La théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple.
Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente. Elle date du début du avec l'axiomatique de Kolmogorov. Des objets tels que les événements, les mesures de probabilité, les espaces probabilisés ou les variables aléatoires sont centraux dans la théorie. Ils permettent de traduire de manière abstraite les comportements ou des quantités mesurées qui peuvent être supposés aléatoires. En fonction du nombre de valeurs possibles pour le phénomène aléatoire étudié, la théorie des probabilités est dite discrète ou continue. Dans le cas discret, c'est-à-dire pour un nombre au plus dénombrable d'états possibles, la théorie des probabilités se rapproche de la théorie du dénombrement ; alors que dans le cas continu, la théorie de l'intégration et la théorie de la mesure donnent les outils nécessaires.
Les objets et résultats probabilistes sont un support nécessaire à la statistique, c'est le cas par exemple du théorème de Bayes, de l'évaluation des quantiles ou du théorème central limite et de la loi normale. Cette modélisation du hasard permet également de résoudre plusieurs paradoxes probabilistes.
Qu'il soit discret ou continu, le calcul stochastique est l'étude des phénomènes aléatoires qui dépendent du temps. La notion d'intégrale stochastique et d'équation différentielle stochastique font partie de cette branche de la théorie des probabilités. Ces processus aléatoires permettent de faire des liens avec plusieurs domaines plus appliqués tels que les mathématiques financières, la mécanique statistique, le , etc.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
vignette|Graphique qui donne, pour chaque nombre n de vignettes différentes (axe vertical), le nombre moyen E(T) de paquets de céréales à acheter pour les posséder toutes (axe horizontal). Le problème du collectionneur de vignettes ou du collectionneur de coupons (, CCP) est un problème de probabilités et de combinatoire qui consiste à estimer le nombre de paquets de céréales à acheter pour collectionner une série complète de vignettes, à raison d'une vignette offerte dans chaque paquet.
Une échelle logarithmique est un système de graduation en progression géométrique. Chaque pas multiplie la valeur par une constante positive. De ce fait, la position sur l'axe d'une valeur est proportionnelle à son logarithme. Une échelle logarithmique est particulièrement adaptée pour rendre compte des ordres de grandeur dans les applications. Elle montre sur un petit espace une large gamme de valeurs, à condition qu'elles soient non nulles et de même signe.
In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem. Let be a sequence of real numbers in such that the sequence converges to a finite limit .
vignette|Une régression linéaire. Les statistiques, dans le sens populaire du terme, traitent à l'aide des mathématiques l'étude de groupe d'une population. En statistique descriptive, on se contente de décrire un échantillon à partir de grandeurs comme la moyenne, la médiane, l'écart type, la proportion, la corrélation, etc. C'est souvent la technique qui est utilisée dans les recensements. Dans un sens plus large, la théorie statistique est utilisée en recherche dans un but inférentiel.
En mathématiques, une mesure positive (ou simplement mesure quand il n'y a pas de risque de confusion) est une fonction qui associe une grandeur numérique à certains sous-ensembles d'un ensemble donné. Il s'agit d'un important concept en analyse et en théorie des probabilités. Intuitivement, la mesure d'un ensemble ou sous-ensemble est similaire à la notion de taille, ou de cardinal pour les ensembles discrets. Dans ce sens, la mesure est une généralisation des concepts de longueur, aire ou volume dans des espaces de dimension 1, 2 ou 3 respectivement.
thumb|Représentation graphique d'une suite pseudoaléatoire. Le terme pseudo-aléatoire est utilisé en mathématiques et en informatique pour désigner une suite de nombres qui s'approche d'un aléa statistiquement parfait. Les procédés algorithmiques utilisés pour la créer et les sources employées font que la suite ne peut être complètement considérée comme aléatoire. La majorité des nombres pseudo-aléatoires en informatique sont créés à partir d'algorithmes qui produisent une séquence de nombres présentant certaines propriétés du hasard.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.
Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...
The probability of detecting technosignatures (i.e., evidence of technological activity beyond Earth) increases with their longevity, or the time interval over which they manifest. Therefore, the assumed distribution of longevities has some bearing on the ...
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...