Explore l'évaluation de la réglementation du marché, en se concentrant sur le trading à haute fréquence et l'impact des changements réglementaires sur la liquidité et la qualité du marché.
Explore l'inférence statistique pour les données de banditisme, en mettant l'accent sur les actions de traitement personnalisées et les défis des estimateurs standards.
Explore l'inférence causale en épidémiologie, en mettant l'accent sur l'impact de la COVID-19 sur la naissance prématurée et en perfectionnant les stratégies de traitement du cancer de la prostate.
Explore la causalité, la corrélation et les corrélations fallacieuses dans l'apprentissage automatique, en mettant l'accent sur l'atténuation des biais et l'invariance entre les environnements.
Enquêter sur la façon dont le mois de naissance influence le succès des athlètes, analyser l'ensemble de données des athlètes japonais pour explorer les tendances dans les dates de naissance et les professions.