Divergence de Kullback-LeiblerEn théorie des probabilités et en théorie de l'information, la divergence de Kullback-Leibler (ou divergence K-L ou encore entropie relative) est une mesure de dissimilarité entre deux distributions de probabilités. Elle doit son nom à Solomon Kullback et Richard Leibler, deux cryptanalystes américains. Selon la NSA, c'est durant les années 1950, alors qu'ils travaillaient pour cette agence, que Kullback et Leibler ont inventé cette mesure. Elle aurait d'ailleurs servi à la NSA dans son effort de cryptanalyse pour le projet Venona.
Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Information mutuelleDans la théorie des probabilités et la théorie de l'information, l'information mutuelle de deux variables aléatoires est une quantité mesurant la dépendance statistique de ces variables. Elle se mesure souvent en bit. L'information mutuelle d'un couple de variables représente leur degré de dépendance au sens probabiliste. Ce concept de dépendance logique ne doit pas être confondu avec celui de causalité physique, bien qu'en pratique l'un implique souvent l'autre.
Entropie conditionnelleEn théorie de l'information, l'entropie conditionnelle décrit la quantité d'information nécessaire pour connaitre le comportement d'une variable aléatoire , lorsque l'on connait exactement une variable aléatoire . On note l'entropie conditionnelle de sachant . On dit aussi parfois entropie de conditionnée par . Comme les autres entropies, elle se mesure généralement en bits. On peut introduire l'entropie conditionnelle de plusieurs façons, soit directement à partir des probabilités conditionnelles, soit en passant par l'entropie conjointe.
Entropie de RényiL'entropie de Rényi, due à Alfréd Rényi, est une fonction mathématique qui correspond à la quantité d'information contenue dans la probabilité de collision d'une variable aléatoire. Étant donnés une variable aléatoire discrète à valeurs possibles , ainsi qu'un paramètre réel strictement positif et différent de 1, l' entropie de Rényi d'ordre de est définie par la formule : L'entropie de Rényi généralise d'autres acceptions de la notion d'entropie, qui correspondent chacune à des valeurs particulières de .
Théorie de l'informationLa théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
Informationvignette|redresse=0.6|Pictogramme représentant une information. L’information est un de la discipline des sciences de l'information et de la communication (SIC). Au sens étymologique, l'« information » est ce qui donne une forme à l'esprit. Elle vient du verbe latin « informare », qui signifie « donner forme à » ou « se former une idée de ». L'information désigne à la fois le message à communiquer et les symboles utilisés pour l'écrire. Elle utilise un code de signes porteurs de sens tels qu'un alphabet de lettres, une base de chiffres, des idéogrammes ou pictogrammes.
Divergence (statistiques)En statistiques, une divergence est une fonction ou une fonctionnelle qui mesure la dissimilarité d'une loi de probabilité par rapport à une autre. Selon le contexte, elles peuvent être définies pour des lois, des mesures positives (non-normalisées), des vecteurs (par exemple sur l'espace des paramètres si l'on considère un modèle paramétrique), ou encore des matrices. Les divergences sont analogues à des distances au carré et permettent de généraliser la notion de distance aux variétés statistiques, mais il s'agit d'une notion plus faible dans la mesure où elles ne sont en général pas symétriques et ne vérifient pas l'inégalité triangulaire.
Distance statistiquevignette|Représentation de la distance en variation totale (en gris) entre deux fonctions de densité En mathématiques, et plus précisément en théorie des probabilités et en statistique, la notion de distance statistique sert à mesurer l'écart entre deux lois de probabilité. Les distances statistiques sont notamment utilisées en théorie de l'information, en statistique, en apprentissage automatique, et en cryptologie. Lorsqu'aucune précision n'est donnée, la « distance statistique » entre deux lois fait généralement référence à la distance en variation totale.
Entropie conjointevignette|Entropie conjointe. En théorie de l'information, l'entropie conjointe est une mesure d'entropie utilisée en théorie de l'information, qui mesure la quantité d'information contenue dans un système de deux variables aléatoires (ou plus de deux). Comme les autres entropies, l'entropie conjointe est mesurée en bits ou en nats, selon la base du logarithme utilisée. Si chaque paire d'états possibles des variables aléatoires ont une probabilité alors l'entropie conjointe de et est définie par : où est la fonction logarithme en base 2.