Ordre de grandeurUn ordre de grandeur est un nombre qui représente de façon simplifiée mais approximative la mesure d'une grandeur physique. Ce nombre, le plus souvent une puissance de 10, est utilisé notamment pour communiquer sur des valeurs très grandes ou très petites, comme le diamètre du système solaire ou la charge d'un électron. L'ordre de grandeur se mémorise plus facilement qu'une valeur précise et suffit pour de nombreux usages. Il est également utile dans les domaines intermédiaires pour situer la taille d'un objet ou pour choisir la gamme d'appareils de mesure à lui appliquer.
Système socio-techniqueUn système socio-technique (ou régime socio-technique) est un réseau tissé entre différents acteurs économiques et sociaux autour d'un produit ou d'un service. Des régimes socio-techniques existent à différentes échelles, des pouvant être inclus dans des systèmes dominants. Un système socio-technique favorise les innovations qui sont cohérentes avec son fonctionnement, et bloque les innovations qui ne s'y intègrent pas.
PredictabilityPredictability is the degree to which a correct prediction or forecast of a system's state can be made, either qualitatively or quantitatively. Causal determinism has a strong relationship with predictability. Perfect predictability implies strict determinism, but lack of predictability does not necessarily imply lack of determinism. Limitations on predictability could be caused by factors such as a lack of information or excessive complexity. In experimental physics, there are always observational errors determining variables such as positions and velocities.
TransdisciplinaritéLa transdisciplinarité est une posture scientifique et intellectuelle. Elle a pour objectif la compréhension de la complexité du monde moderne et du présent. Le mot transdisciplinarité a été inventé par Jean Piaget, en 1970. La transdisciplinarité est définie par Basarab Nicolescu par trois postulats méthodologiques : l'existence de niveaux de réalité et de perception, la logique du tiers inclus et la complexité.
Gibbs measureIn mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. The canonical ensemble gives the probability of the system X being in state x (equivalently, of the random variable X having value x) as Here, E is a function from the space of states to the real numbers; in physics applications, E(x) is interpreted as the energy of the configuration x.
Linear stabilityIn mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form , where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part. If all the eigenvalues have negative real part, then the solution is called linearly stable.
Homoclinic orbitIn the study of dynamical systems, a homoclinic orbit is a path through phase space which joins a saddle equilibrium point to itself. More precisely, a homoclinic orbit lies in the intersection of the stable manifold and the unstable manifold of an equilibrium. It is a heteroclinic orbit–a path between any two equilibrium points–in which the endpoints are one and the same.
Heteroclinic orbit[[Image:Heteroclinic orbit in pendulum phaseportrait.png|thumb|right|The phase portrait of the pendulum equation math|1=''x + sin x = 0. The highlighted curve shows the heteroclinic orbit from (x, x′) = (–π, 0) to (x, x′) = (π, 0). This orbit corresponds with the (rigid) pendulum starting upright, making one revolution through its lowest position, and ending upright again.]] In mathematics, in the phase portrait of a dynamical system, a heteroclinic orbit (sometimes called a heteroclinic connection) is a path in phase space which joins two different equilibrium points.
Théorie des catastrophesDans le domaine de la topologie différentielle, la théorie des catastrophes, fondée par René Thom, est une branche de la théorie des bifurcations qui a pour but de construire le modèle dynamique continu le plus simple pouvant engendrer une morphologie, donnée empiriquement, ou un ensemble de phénomènes discontinus. Plus précisément, il s'agit d'étudier qualitativement comment les solutions d'équations dépendent du nombre de paramètres qu'elles contiennent. Le terme de « catastrophe » désigne le lieu où une fonction change brusquement de forme.
IntermittencyIn dynamical systems, intermittency is the irregular alternation of phases of apparently periodic and chaotic dynamics (Pomeau–Manneville dynamics), or different forms of chaotic dynamics (crisis-induced intermittency). Experimentally, intermittency appears as long periods of almost periodic behavior interrupted by chaotic behavior. As control variables change, the chaotic behavior become more frequent until the system is fully chaotic. This progression is known as the intermittency route to chaos.