Résumé
Predictability is the degree to which a correct prediction or forecast of a system's state can be made, either qualitatively or quantitatively. Causal determinism has a strong relationship with predictability. Perfect predictability implies strict determinism, but lack of predictability does not necessarily imply lack of determinism. Limitations on predictability could be caused by factors such as a lack of information or excessive complexity. In experimental physics, there are always observational errors determining variables such as positions and velocities. So perfect prediction is practically impossible. Moreover, in modern quantum mechanics, Werner Heisenberg's indeterminacy principle puts limits on the accuracy with which such quantities can be known. So such perfect predictability is also theoretically impossible. Laplace's demon is a supreme intelligence who could completely predict the one possible future given the Newtonian dynamical laws of classical physics and perfect knowledge of the positions and velocities of all the particles in the world. In other words, if it were possible to have every piece of data on every atom in the universe from the beginning of time, it would be possible to predict the behavior of every atom into the future. Laplace's determinism is usually thought to be based on his mechanics, but he could not prove mathematically that mechanics is deterministic. Rather, his determinism is based on general philosophical principles, specifically on the principle of sufficient reason and the law of continuity. Although the second law of thermodynamics can determine the equilibrium state that a system will evolve to, and steady states in dissipative systems can sometimes be predicted, there exists no general rule to predict the time evolution of systems distanced from equilibrium, e.g. chaotic systems, if they do not approach an equilibrium state. Their predictability usually deteriorates with time and to quantify predictability, the rate of divergence of system trajectories in phase space can be measured (Kolmogorov–Sinai entropy, Lyapunov exponents).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.