Shadow priceA shadow price is the monetary value assigned to an abstract or intangible commodity which is not traded in the marketplace. This often takes the form of an externality. Shadow prices are also known as the recalculation of known market prices in order to account for the presence of distortionary market instruments (e.g. quotas, tariffs, taxes or subsidies). Shadow prices are the real economic prices given to goods and services after they have been appropriately adjusted by removing distortionary market instruments and incorporating the societal impact of the respective good or service.
Hamiltonian (control theory)The Hamiltonian is a function used to solve a problem of optimal control for a dynamical system. It can be understood as an instantaneous increment of the Lagrangian expression of the problem that is to be optimized over a certain time period. Inspired by—but distinct from—the Hamiltonian of classical mechanics, the Hamiltonian of optimal control theory was developed by Lev Pontryagin as part of his maximum principle. Pontryagin proved that a necessary condition for solving the optimal control problem is that the control should be chosen so as to optimize the Hamiltonian.
Méthode de l'ellipsoïdeEn optimisation mathématique, la méthode de l'ellipsoïde est une méthode itérative utilisée pour minimiser des fonctions convexes. En informatique théorique, cette méthode est connue comme étant le premier algorithme de complexité polynomiale découvert pour résoudre les problèmes d'optimisation linéaire. L'algorithme construit une suite d'ellipsoïdes de plus en plus petits, qui enserrent à chaque étape le minimum de la fonction objectif.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Problème NP-completEn théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Algorithme de KarmarkarL’algorithme de Karmarkar est un algorithme introduit par Narendra Karmarkar en 1984 pour résoudre les problèmes d'optimisation linéaire. C'est le premier algorithme réellement efficace qui résout ces problèmes en un temps polynomial. La méthode de l'ellipsoïde fonctionne aussi en temps polynomial mais est inefficace en pratique. En posant le nombre de variables et le nombre de bits d'entrée de l'algorithme, l'algorithme de Karmarkar réalise opérations sur bits à comparer aux opérations pour la méthode des ellipsoïdes.
Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Conjecture des jeux uniquesLa conjecture des jeux uniques (en anglais Unique Games Conjecture et souvent abrégée UGC) est une conjecture en théorie de la complexité, proposée par Subhash Khot en 2002. Selon cette conjecture, résoudre de manière approximative un certain problème spécifique est NP-difficile. Elle a d'importantes applications relatives à la complexité des algorithmes d'approximation ; le travail qui a été fourni autour de cette conjecture a également permis de démontrer des résultats relatifs à d'autres sujets, par exemple sur la stabilité des systèmes de vote.