The Hamiltonian is a function used to solve a problem of optimal control for a dynamical system. It can be understood as an instantaneous increment of the Lagrangian expression of the problem that is to be optimized over a certain time period. Inspired by—but distinct from—the Hamiltonian of classical mechanics, the Hamiltonian of optimal control theory was developed by Lev Pontryagin as part of his maximum principle. Pontryagin proved that a necessary condition for solving the optimal control problem is that the control should be chosen so as to optimize the Hamiltonian. Consider a dynamical system of first-order differential equations where denotes a vector of state variables, and a vector of control variables. Once initial conditions and controls are specified, a solution to the differential equations, called a trajectory , can be found. The problem of optimal control is to choose (from some set ) so that maximizes or minimizes a certain objective function between an initial time and a terminal time (where may be infinity). Specifically, the goal is to optimize a performance index at each point in time, subject to the above equations of motion of the state variables. The solution method involves defining an ancillary function known as the control Hamiltonian which combines the objective function and the state equations much like a Lagrangian in a static optimization problem, only that the multipliers —referred to as costate variables—are functions of time rather than constants. The goal is to find an optimal control policy function and, with it, an optimal trajectory of the state variable , which by Pontryagin's maximum principle are the arguments that maximize the Hamiltonian, for all The first-order necessary conditions for a maximum are given by which is the maximum principle, which generates the state transition function , which generates the latter of which are referred to as the costate equations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
EE-715: Optimal control
This doctoral course provides an introduction to optimal control covering fundamental theory, numerical implementation and problem formulation for applications.
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-212: Analyse numérique et optimisation
L'étudiant apprendra à résoudre numériquement divers problèmes mathématiques. Les propriétés théoriques de ces méthodes seront discutées.
Concepts associés (5)
Shadow price
A shadow price is the monetary value assigned to an abstract or intangible commodity which is not traded in the marketplace. This often takes the form of an externality. Shadow prices are also known as the recalculation of known market prices in order to account for the presence of distortionary market instruments (e.g. quotas, tariffs, taxes or subsidies). Shadow prices are the real economic prices given to goods and services after they have been appropriately adjusted by removing distortionary market instruments and incorporating the societal impact of the respective good or service.
Pontryagin's maximum principle
Pontryagin's maximum principle is used in optimal control theory to find the best possible control for taking a dynamical system from one state to another, especially in the presence of constraints for the state or input controls. It states that it is necessary for any optimal control along with the optimal state trajectory to solve the so-called Hamiltonian system, which is a two-point boundary value problem, plus a maximum condition of the control Hamiltonian.
Commande optimale
La théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.