Complet (complexité)En informatique théorique, et notamment en théorie de la complexité, un problème complet pour une classe de complexité est un problème de décision qui fait partie des problèmes les plus difficiles à résoudre de cette classe. En ce sens, il est un représentant de la classe. C'est une notion centrale en complexité. Elle permet notamment d'établir des inclusions entre les classes en ne considérant qu'un seul problème. Un problème p est dit difficile pour une classe C pour un certain type de réduction s'il existe une réduction de ce type, depuis n'importe quel problème de la classe vers p.
P-completEn théorie de la complexité computationnelle, un problème de décision est P-complet (c.-à-d. complet pour la classe de complexité P des problèmes en temps polynomial) s'il est dans P et tout problème dans P peut y être réduit par une réduction en espace logarithmique (d'autres réductions sont aussi utilisées, comme NC). La notion de problème de décision P-complet est utile pour déterminer : quels problèmes sont difficiles à paralléliser efficacement (si on utilise des réductions NC), quels problèmes sont difficiles à résoudre dans un espace limité (si on utilise des réductions en espace logarithmique).
Machine de Turing probabilisteEn théorie de la complexité, une machine de Turing probabiliste (ou randomisée) est une machine de Turing qui peut utiliser du hasard. Ce genre de machine permet de définir des classes de complexité intéressantes et de donner un modèle de calcul pour les algorithmes probabilistes comme le test de primalité de Miller-Rabin. Il existe différentes définitions équivalentes des machines de Turing probabilistes. Dans la suite tous les tirages sont indépendants et uniformes.
Système de preuve interactivevignette|504x504px|Un système de preuve interactive est composé de deux machines abstraites : un prouveur et un vérificateur qui s'échangent des messages. En théorie de la complexité des algorithmes, un système de preuve interactive est un protocole formel de démonstration de théorèmes qui fait intervenir deux participants qui échangent des messages. Cela permet de définir des classes de complexité intéressantes, notamment la classe IP qui est le modèle utilisé dans le théorème PCP qui caractérise la classe NP.
Temps de calcul pseudo-polynomialEn informatique théorique, et notamment en théorie de la complexité, un algorithme est appelé pseudo-polynomial si sa complexité en temps est un polynôme en la valeur numérique de l'entrée (mais pas nécessairement en la taille en mémoire de l'entrée). Considérons le problème du test de primalité. On peut vérifier qu'un entier naturel donné n est premier en testant qu'il n'est divisible par aucun des entiers . Cela exige divisions, de sorte que le temps pris par cet algorithme naïf est linéaire en la valeur n .
Analyse de la complexité des algorithmesvignette|Représentation d'une recherche linéaire (en violet) face à une recherche binaire (en vert). La complexité algorithmique de la seconde est logarithmique alors que celle de la première est linéaire. L'analyse de la complexité d'un algorithme consiste en l'étude formelle de la quantité de ressources (par exemple de temps ou d'espace) nécessaire à l'exécution de cet algorithme. Celle-ci ne doit pas être confondue avec la théorie de la complexité, qui elle étudie la difficulté intrinsèque des problèmes, et ne se focalise pas sur un algorithme en particulier.
Machine de Turing non déterministeUne machine de Turing non déterministe est similaire à une machine de Turing habituelle, qui, elle, est déterministe, mais s'en différencie dans le fait qu'étant non déterministe elle peut avoir plusieurs transitions activables, pour un état donné. Alors que, connaissant le caractère lu sur le ruban et l'état courant, une machine de Turing déterministe dispose d'au plus une transition possible, une machine de Turing non déterministe peut en avoir plusieurs.
Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Problème P ≟ NPvignette|400px|Représentation visuelle des deux configurations possibles. Le problème P ≟ NP est une conjecture en mathématiques, et plus précisément en informatique théorique, considérée par de nombreux chercheurs comme une des plus importantes conjectures du domaine, et même des mathématiques en général. L'Institut de mathématiques Clay a inclus ce problème dans sa liste des sept problèmes du prix du millénaire, et offre à ce titre un million de dollars à quiconque sera en mesure de démontrer P = NP ou P ≠ NP ou de démontrer que ce n'est pas démontrable.
Réduction en espace logarithmiqueEn théorie de la complexité, une réduction en espace logarithmique est une réduction calculable par une machine de Turing disposant d'un espace de travail logarithmique. La machine de Turing utilisée pour une réduction en espace logarithmique est constituée de trois rubans au lieu d'un : un ruban d'entrée (en lecture seule), un ruban de travail (de taille logarithmique en la taille du ruban d'entrée), et un ruban de sortie (en écriture seule et tel que la tête d'écriture ne peut écrire deux fois sur une même case).